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1.1 Layered Tree Algorithm 

 

THEOREM 
Let 𝑇 be a Binary Tree with 𝑛 vertices. 
Algorithem 1 constructs a drawing 𝑇′of 𝑇 in 
𝑂(𝑛) time such that 𝑇′ is layered, in example 
the y-coordinate of each vertex is equal to minus 
depth of the vertex. 
• 𝑇′ is planar, straightline and strictly drawn 
• 𝑇′ is embedding the presaving in example 

the left-to-right order of each vertex is 
preserved 

• Any two  vertices of 𝑇′ have horizontal and 
vertical distance of at least 1 

• The x-coordinates of a parent with 2 
children is the average of the x-coordinate 
of its children 

• The area of 𝑇′ is 𝑂(𝑛2) 
 
IMPLEMENTATION OF ALGORITHM 1 

1. Postorder traveling of 𝑇 to recursively 
compute for each vertex 𝑣 the horizon 
displacement of its children with respect 
to 𝑣 

2. Preorder traveling of 𝑇 to compute x-
coordinates (accumulation of displacements 
on path to root) and y-coordinates (depth) 
of all vertices 

 
DEFINITION 
The left contour of a Binary Tree 𝑇 with height ℎ 
is the sequenze of vertices 𝑣0, … , 𝑣𝑛 such that 𝑣𝑖 
is the leftmost vertex of 𝑇 with depth i. Right 
contour is symmetrically defined. 

 

 

2 
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3. Follow left contour of right subtree and 
right contour of left subtree. ∀ vertices in 
postorder traveling invariant. After 
completing processing vertiex 𝑣, the right 
contour and left contour of the subtrees 
rooted at 𝑣 are stored in linked lists 

 
CONSTRUCTING THE CONTOUR LISTS 
Let 𝑇(𝑢) be the subtree rooted at 𝑣 and 𝑇′, 𝑇′′ 
be the left and right subtrees of 𝑣. 

1. If 𝑇′ and 𝑇′′ have the same height, then the 
left contour list of 𝑇(𝑣) is the left contour 
of 𝑇′ plus 𝑣; the right conture of 𝑇(𝑣) is the 
same as the right contour of 𝑇′′ plus 𝑣. 

 

 

2. If the height of 𝑇′ < 𝑇′′ then the right 
conture of 𝑇(𝑣) ist the same as the right 
contour of 𝑇′′ plus 𝑣. Let ℎ′ be the height of 
𝑇′; 𝑢 the bottemmost vertex on the left 
contour of 𝑇′. Let 𝑤 be the vertex of the 
left contour of 𝑇′′ with depht ℎ′ + 1. Then 
the left contour of 𝑇(𝑣) consists of 𝑣, the 
left contour of 𝑇′ and the partion oft he left 
contour of 𝑇′′ beginning at 𝑤 and ending at 
total height ℎ′′ of 𝑇′′. 

 

 

left contour 

right contour 
left/right contour 

𝑇′ 𝑇′′ 

𝑣 



 Graph Drawing 
Björn Gernert Vorlesungsaufzeichnungen 3/46 
 Wintersemester 2011/12  

 

3. Height of 𝑇′ > 𝑇′′ symmetric to 2. 
 

⇒ Must travel down the contours of 𝑇′, 𝑇′′ only 
as far as the height of the subtree with smaller 
height. 
 
⇒ The time spent processing vertex 𝑣 in the 
postorder travel is proportional to the minimum 
of the heights 𝑇′,𝑇′′. 
 
Running time of postorder travel.: 
 

�(1 + min{ℎ′(𝑣),ℎ′′(𝑣)})
𝑐∈𝑇

= 

𝑛 + �min{ℎ′(𝑣),ℎ′′(𝑣)} = 𝑂(𝑛)
𝑣∈𝑇

 

 

 

1.2 Radial drawings 

 

DEFINITION 
A radial drawing is a variation of a layered 
drawing where the root of the tree is placed at 
the origin and layers are concentric circles 
centered at the origin. 

 

 

𝑇′ 

𝑇′′ 

𝑣 

𝑤 ℎ′ 
ℎ′′ 

   𝑅 

𝑐1 
𝑐2 
𝑐3 
𝑐4 

Find the root: pruning 
1 vertex left → root 
2 vertices left: 

X 𝑤 𝑅 𝑣 
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The children of 𝑣 are arranged on 𝑐𝑖 + 1 
according to the number of leaves in their 
resprective subtrees. That means for each child 
of 𝑎 of 𝑣 the angle 𝛽𝑢 of 𝑊𝑢 is 𝛽𝑢 =
min (𝑙(𝑢)∗𝛽𝑣

𝑙(𝑣) , 𝜏) 

 

 

1.3 Planarity testing 
OBSERVATION 
• A graph is planar if all its connected 

components are planar 
• A connected graph is planar, iff all its 

biconnected components are planar 
 
⇒  

1. Eular planar? 
2. Decompose graph in connected and 

biconnected components 
 

⇒ Algorithm works on biconnected components. 
 
DEFINITION 
Let 𝐺 be a biconnected graph given a cycle 𝐶 of 
𝐺, we partition the edges of 𝐺\𝐶 into classes: 
 
Two edges are in the same class if there is a path 
between them that does not contain any vertex 
of 𝐶. The subgraph induced by edges in one class 
is a piece of 𝐺 w.r.t. 𝐶. 

 

 
 

𝑣 

𝑟 

𝑢 
𝑎 𝑏 

𝑐𝑖 𝑐𝑖+1 

𝐹𝑣 

𝛽𝑣  
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Two types of pieces: 
• Single edge between two vertices of 𝐶 

(𝑃3,𝑃4,𝑃5,𝑃6) 
• Connected graph with at least 1 vertex not 

in 𝐶 (𝑃1,𝑃2) 
 
DEFINITION 
• The vertices of a piece 𝑃 that are in 𝐶 are 

called attachments of 𝑃 
• A cycle 𝐶 of 𝐺 is separating, if it has at least 

two pieces and nonseperating if it has none. 
• If 𝐺 = 𝐶 then 𝐶 has no pieces 

 
LEMMA 
Let 𝐺 be a biconnected graph and let 𝐶 be a 
nonseperating cycle of 𝐺 with piece 𝑃. If 𝑃 is not 
a path, then 𝐺 has a seperaiting cycle 𝐶′ 
consisting of a subgraph of 𝐶 plus a path of 𝑃 
between two attachments. 

 

 

 

PROOF 
Let 𝑢, 𝑣 be two attachments of 𝑃 that are 
consecutive in the circular ordering and let 𝛾 be 
a subpath of 𝐶 between 𝑢 and 𝑣 that does not 
contain any attachments of 𝐶. 𝑃 is connected 

 

𝑎0 

𝑐 
Piece 1 

Piece 5 
Piece 4 
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𝑢 

𝑐 

𝑣 

𝑒 

𝜋 

𝛾 

𝑃 

+ − 𝛾 = 𝐶′ 
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⇒ ∃ path 𝜋 in 𝑃 between 𝑢 and 𝑣. Be the cycle 
obtained by replacing 𝛾 with 𝜋. If 𝑃 is not a path 
let 𝑐 be an edge of 𝑃 not 𝜋. There is a piece of 𝐶′ 
containing 𝑐 that is constructed from 𝛾. ⇒ 𝐶′ has 
two pieces.                 ∎ 
 
If 𝐺 is planar, then in any planar drawing of 𝐺 
each piece is drawn either completely inside or 
outside of 𝐶. 
 

 

DEFINITION 
Two pieces of 𝐺 w.r.t. 𝐶 interlace if they cannot 
be drawn on the same side of 𝐶 without 
intersection. 
 
DEFINITION 
The interlacement graph 𝐼 of the pieces of 𝐺 
w.r.t. 𝐶 is the graph with vertices representing 
the pieces and the edges of interlacing pieces. 

 

 

 

OBSERVATION 
If 𝐺 is planar, then 𝐼 of the pieces w.r.t. cycle 𝐶 
must be bipartite. 
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⇒ Interlacing pieces must be drawn on opposite 
sides of 𝐶. 
 
THEOREM 
A biconnected graph 𝐺 with a cycle 𝐶 is planar iff 
it holds that: 
• For each piece 𝑃 of 𝐺 w.r.t. 𝐶 the graph 

obtained by adding 𝑃 to 𝐶 is planar 
• The interlacement graph 𝐼 of the pieces of 

𝐺 w.r.t. 𝐶 is bipartite 
 
ALGORITHM 2 – PLANARITY TESTING 
Input: 
• Biconnected graph with 𝑛 vertices and 

edges 𝑒: 𝑒 ≤ 3𝑛 − 6 
• Separating cycle 𝑐 

 
Output: 
• Graph planar? yes/no 

 
Algorithm: 

1. Compute pieces of 𝐺 w.r.t. 𝐶 
2. For each piece 𝑃 that is not a path: 

a. Let 𝑃′ be the graph obtained by 
adding 𝑃 to 𝐶 

b. Let 𝐶′ be the cycle of 𝑃′ obtained 
from 𝐶 by replacing the portion of 𝐶 
between two consecutive 
attachements with a path of 𝑃 
between them 

c. Apply Algorithm 2 recursively to 𝑃′ 
and cycle 𝐶′ 

3. Compute interlacement graph 𝐼 of the 
pieces 

4. Test whether 𝐼 is bipartite. If not return 
“not planar” 

5. Return “planar” 
 
ACCORDING TO STEP 3 – INTERLACEMENT GRAPH 
Given a piece 𝑃 with attachements 𝑎0, … ,𝑎𝑘−1 
in this order around 𝐶, we label the vertices of 𝐶 
with integers in the range of [0, 2𝑛 − 1]: 
• Label 2 ∗ 𝑜 if it is an attachement of 𝑃 
• Label 2 ∗ 𝑜 + 1 otherwise 

 
A piece 𝑄 does not interlace with 𝑃 iff all its 
attachements have labels that lie in the open 
interval between two consecutive even 
numbers. 
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• Labeling of 𝐶: 𝑂(𝑛) time 
• Testing whether 𝑄 interlaces with 𝑃 takes 

time proportional to the number of 
attachements of 𝑄 ≤ 1 + |𝐸(𝑄)|; all pieces 
are edge-disjoint. → linear time 

⇒ Step 3 takes 𝑂(𝑛2) time 
 
Step 4 has 𝑂(𝑛) and 𝑂(𝑛2) edges. Test for 
bipartiteness takes 𝑂(𝑛2) time. 
 
⇒ 1 recursive call: 𝑂(𝑛2) time 
⇒ 𝑂(𝑛) calls 
⇒ Total running time of Algorithm 2: 𝑂(𝑛3) 

 

2.1 Planar orientations 
LEMMA 
Let 𝐺 be a planar st-graph. Each face of 𝐺 
consists of two directed paths with common 
origin [orig(𝑓)] and destination [dest(𝑓)]. The 
following property is “dual” to the one above. 
 
LEMMA 
For each vertex 𝑣 of a planar st-graph, the 
incoming edges appear consecutively around 𝑣, 
and so do the outgoing edges. 

 

 

𝑎0 = 𝑣0 
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LEMMA 
For any two faces 𝑓,𝑜 of a planar st-graph 
exactly one of the following holds: 
• 𝐺 has a directed path from 𝑑𝑒𝑠𝑡(𝑓) →

𝑜𝑟𝑜𝑜𝑛(𝑜) 
• 𝐺 has a directed path from 𝑑𝑒𝑠𝑡(𝑜) →

𝑜𝑟𝑜𝑜(𝑓) 
• 𝐺∗ has a directed path from 𝑓 → 𝑜 
• 𝐺∗ has a directed path from 𝑜 → 𝑓 

 
PROOF 
Consider topological sorting of 𝐺; w.l.o.g. 
(without loss of generality) assume #dest(𝑓) <
#orign(𝑜). We call a path from a vertex 𝑣 ∈ 𝐺 
that always takes the leftmost/rightmost 
outgoing edge the leftmost/rightmost path from 
𝑣 
• 𝑃1 leftmost path from dest(𝑓) → 𝑡 
• 𝑃2 rightmost path from dest(𝑓) → 𝑡 
• 𝑃3 leftmost path from dest(𝑜) → 𝑡 
• 𝑃4 rightmost path from dest(𝑜) → 𝑡 

 
if there is a directed path from dest(𝑓) →
orig(𝑜). Otherwise, either 𝑃2 crosses 𝑃3 or 𝑃1 
crosses 𝑃4 at a common vertex 𝑥. 

 

 

Then every edge incident to any vertex in 𝑃2 
from the right side is incoming and every edge 
incident to any vertex in 𝑃3 from the left side 
is incoming. 
⇒ Because of the construction of 𝐺∗ there is a 
directed path in 𝐺∗ 𝑓 → 𝑜               ∎ 

 

 

dest(𝑓) 

𝑜𝑟𝑜𝑜(𝑜) 

𝑥 

  

  

    

  
  

  

𝑡 

𝑃2 𝑃3 

𝑓 
𝑜 

    Directed path from 𝑓 to 𝑜 

𝑥: First vertex at witch 𝑃2, 
 𝑃3 intersect 
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An element of 𝑉 ∪ 𝐸 ∪ 𝐹 in 𝐺 is an object of 
𝐺. For a vertex 𝑣: 
• orig(𝑣) = dest(𝑣) = 𝑣 

 
For a face 𝑓: 
• left(𝑓) = right(𝑓) = 𝑓 

 
LEMMA 
For any two objects 𝑜1,𝑜2,𝑜3 of a planar st-
graph, exactly one of the following holds: 
• 𝐺 has a directed path from dest(𝑜1) →

orig(𝑜2) 
• 𝐺 has a directed path from dest(𝑜2) →

orig(𝑜1) 
• 𝐺∗ has a directed path from right(𝑜1) →

left(𝑜2) 
• 𝐺∗ has a directed path from right(𝑜2) →

left(𝑜1) 

 

2.2 Constrained visibility representations 
DEFINITION 
Two horizontal segments are visible if they can 
be joined by a vertical segment that does not 
intersect any other horizontal segment. 

 

 

DEFINITION 
Let 𝐺 be a planar st-graph, 𝐻 a visibility 
representation Γ of 𝐺 draws each vertex 𝑣 as 
horizontal vertex segment Γ(𝑣) and each edge 
(𝑢, 𝑣) as vertical edge segment Γ(𝑢, 𝑣) such 
that: 

• Vertex segments do not overlap 
• Edge segments do not overlap 
• An edge segment Γ(𝑢, 𝑣) has its bottom 

endpoint on Γ(𝑢). Its top endpoint on 
Γ(𝑣) and does not intersect any other 
vertex segments. 

 

visible not visible visible 
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DEFINITION 
A visible representation is constrained if some 
predefined edges have the same x-coordinates. 

 

 

DEFINITION 
Let 𝐺 be a planar st-graph with 𝑛 vertices. Two 
parts 𝜋1,𝜋2 of 𝐺 are nonintersecting if they are 
edge disjoint and do not cross at a common 
vertex. 

 

 

ALGORITHM 3 – CONSTRAINED VISIBILITY 
Input: 
• Planar st-graph 𝐺 with vertices 
• A set Π of nonintersecting 𝐺paths covering 

𝐸(𝐺) 
Output: 
• Constrained visibility representation Γ of 𝐺 

with integer coordinates and area 𝑂(𝑛2) 
 

1. Construct 𝐺Π with 
• Vertex set 𝐹 ∪ Π 
• Edge set 

{(𝑓,𝜋)|𝑓 = left(𝑒)for some edge  

 

u 

v 

w 
Γ(𝑤) 

Γ(𝑣) 

Γ(𝑢) 

Γ(𝑢,𝑤) 

 

noncrossing crossing 
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𝑒 of path 𝜋} ∪ {(𝑓,𝜋)|𝑜 = 
right(𝑒) for some edge 𝑒 of path 𝜋} 

2. Assign unit weights to the edges of 𝐺 and 
compute an optimal topological numbering. 
𝑌 of 𝐺 with 𝑌(𝑠) = 0. 

3. Assign half-unit weights to the edges of 𝐺Π 
and compute an optimal topological 
numbering 𝑋 of 𝐺Π such that 𝑋(𝑠∗) = −1

2
. 

4. For each path 𝜋 ∈ Π do: 
 For each edge 𝑒 ∈ 𝜋 do: 
  draw Γ(𝑒) as vertical segment: 
  𝑥�Γ(𝑒)� = 𝑋(𝜋) 
  𝑦𝐵�Γ(𝑒)� = 𝑌�orig(𝑒)� 
  𝑦𝑇�Γ(𝑒)� = 𝑌�dest(𝑒)� 

5. For each vertex 𝑣 ∈ 𝐺 do: 
 draw Γ(𝑣) as horizontal segment with: 
 𝑦�Γ(𝑣)� = 𝑌(𝑣) 
 𝑥𝐿�Γ(𝑣)� = min𝑣∈𝜋 𝑋(𝜋) 
 𝑥𝑅�Γ(𝑣)� = max𝑣∈𝜋 𝑋(𝜋) 
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LEMMA 
The digraph 𝐺Π constructed in step 1 of 
Algorithm 3 is a planar st-graph. 
 
THEOREM 
Let 𝐺 be a planar st-graph with 𝑛 vertices and let 
Π be a set of nonintersecting paths, covering the 
edges of 𝐺. Algorithm 3 computes in 𝑂(𝑛) a 
visibility representation of 𝐺 with integer 
coordinates and 𝑂(𝑛2) area such that the edge 
of every path 𝜋 ∈ Π is vertically aligned. 
 
From a constrained visibility representation we 
can construct: 
• Constrained polyline drawing in 𝑂(𝑛) time. 

1. Vertex segment → point 
IF 𝑣 ∈ Π:𝑥(𝑢) = 𝑋(𝜋); 𝑦(𝑣) = 𝑌(Π) 
otherwise free to chose 
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2. Edge segment → edge 
IF 𝑦(𝑣) − 𝑦(𝑢) = 1: 
segment with ends in 𝑃(𝑢),𝑃(𝑣) 
else: 
polygonal line from 𝑃(𝑢) to 𝑃(𝑣) 
through the points 
�𝑥�τ(𝑢, 𝑣)�,𝑦(𝑢) + 1�; 

�𝑥�𝜏(𝑢, 𝑣)�,𝑦(𝑣) − 1� 

 

 

 
• Planar orthogonal drawing in 𝑂(𝑛) time 

assume max degree ≤ 4 
1. Vertices: 

s/t draw at intersection of vertex 
segment with median edges. 
All other vertices: 
Drawn at intersection 𝑃(𝑣) of vertex 
segment with the edge segments of 
path 𝜋𝑣 

2. Edges: 
𝑒 = (𝑢, 𝑣)(𝑢, 𝑣 ∉ {𝑠 𝑡⁄ }), drawn as 
orthogonal chain trough points 𝑃(𝑢); 
intersection of 𝜏(𝑢) and 𝜏(𝑒); 
intersection of 𝜏(𝑒)and 𝜏(𝑣); and 
𝑃(𝑣). 
⇒ 3 segments (first and last may be 
empty) 

 
Edges incident to 𝑠, 𝑡: 
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2.3 Dominance drawings 
DEFINITION 
A dominance drawing 𝜏 of a digraph 𝐺, is 
drawing such that, for any two vertices 𝑢, 𝑣 
there is a directed path from 𝑢 → 𝑣 in 𝐺 iff 
𝑥(𝑢) ≤ 𝑥(𝑣) and 𝑦(𝑢) ≤ 𝑦(𝑣) in 𝜏. “𝑣 is 
dominating 𝑢” 

 

 

DEFINITION 
A digraph without transitive edges is called 
“reduced”. 

 

 

LEMMA 
Any strait-line dominance drawing Γ of a 
reduced planar st-graph 𝐺 is planar. 
 
ALGORITHM 4 – DOMINANCE STRAIGHT-LINE 
See handout. 
 
3 PHASES 
• Preprocessing → set up datastructure 

 

𝑣1 

𝑣2 

Transitive edge 𝑒 𝑣 

𝑒 

𝑢 
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• Preliminary layout → Assign to all vertices 
distinct (𝑥,𝑦) coordinates. 
Essentially: 2 topological sortings; scanning 
for each vertex the successers; clockwise 
and counterclockwise 

• Compaction → Reduce area of final drawing 
 
EXAMPLE 

 

 

Preliminary layout:  

 

𝑣 

edge (𝑢, 𝑣) 
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After compaction:  

 

Minimal drawing:  

 

THEOREM 
Let 𝐺 be a reduced planar st-graph with 𝑛 
vertices. Algorithm 4 dominance straight line 
constructs in 𝑂(𝑛) time a planar straight-line 
dominance grid drawing Γ of 𝐺 with 𝑂(𝑛2) area. 
• Symmetries 

Any components of 𝐺 that are isomorphic 
(same direction of edges + boundaries of 
the faces) or symmetric (axially or 
rotationally isomorphic to themselves) have 
straight-line drawings that are congruent 
(up to a translation-reflection) or symmetric 
(with respect to the line through 
source/sink, or 180° rotation through its 
centroid) 

• Minimum area drawings 
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Algorithm can be modified but symmetries 
may be lost 

• General planar st-graphs 
Add dummy vertex on all transitive edges 

 

3.1 Orthogonal drawings with maximum-degree 4 
DEFINITION 
An st-numbering for a graph 𝐺 with 𝑛 vertices is 
a numbering for 𝑠 = 𝑣1,𝑣2, … , 𝑣𝑛 = 𝑡 of the 
vertices of 𝐺 such that every vertex 𝑣𝑗 ∉ {𝑠, 𝑡} is 
adjacent to at least two vertices 𝑣𝑖, 𝑣𝑘  with 
𝑜 < 𝑗 < 𝑘. 
We orient every edge of 𝐺 from the low number 
vertex to the high numbered one. 
 
BASIC ALGORITHM IDEA 
• Compute st-numbering 
• Place first vertex on grid. Allocate columns 

for all incident edges 
• Place other vertices on grid according to st-

numbering: 
o Vertex 𝑣 gets a new row 
o All incoming edges of 𝑣 are drawn on 

the already allocated columns 
o All outgoing edges of 𝑣 are “drawn” 

by allocating one new column per 
edge 

 
⇒ 
• 𝑂(𝑛) time 
• 𝑂(𝑛2) area 
• At most 2𝑛 + 4 bends (at most 2 per edge) 

 
Pair vertices for space reduction: 

1. Row pairs: 
a. Both vertices share the same row 
b. Vertices of such a pair are placed in 

different rows, but their placement 
results in reusing one row 

 

+ 

𝑢 

𝑣 
add 
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2. Column pairs 
a. The two vertices are placed such that 

at least two different edges use the 
same column 

 

 

DEFINITION 
A vertex with 𝑎 incoming and 𝑏 outgoing edges 
is a 𝑎-𝑏 vertex (0 ≤ 𝑎 + 𝑏 ≤ 4) 
 
CONDENSE 𝐺 
Scan 𝐺 for 1-1 vertices whose outgoing edge 
enters a 1-2 vertex or a 1-3 vertex. Absorb these 
1-1 vertices into a single edge until no 1-2 or 1-3 
vertex has a 1-1 vertex as immediate 
predecessor. 

 

 

Condensed graph 𝐺′|𝑉(𝐺′)| = 𝑛′. Need to 
modify the st-numbering to remove gaps. 
 
DEFINITION 
• An assigned vertex belongs to a pair; an 

unassigned vertex does not 
• The next unassigned vertex considered is 

always a  1-2, 1-3, 2-2  vertex and it is 
paired with some lower numbered vertex in 
𝐺′ 

• The vertex of a pair with the lower st-
numbering is called the first vertex, the 
other is the second vertex 

• A predecessor of a vertex in 𝐺 or 𝐺′ with 
respect to the st-numbering is the 

 



 Graph Drawing 
Björn Gernert Vorlesungsaufzeichnungen 20/46 
 Wintersemester 2011/12  

immediate predecessor of the vertex 
• Let �𝑣𝑖 , 𝑣𝑗� (𝑗 < 𝑜) be a pair formed by 

Algorithm 5. If they are not predecessor-
successor they are called independent 

 
Case analysis for drawing pairs 

1) 𝑣𝑖 is a 2-2 vertex 
a. 𝑣𝑗 is a 2-2 vertex and predecessor 

of 𝑣𝑖 

 

b. 𝑣𝑗 is a 2-2 vertex independent of 
𝑣𝑖 

 

 

c. 𝑣𝑗 is a 2-1 or 3-1 vertex and 
predecessor of 𝑣𝑖 

 

 

d. 𝑣𝑗 is a 1-1 vertex and 
predecessor of 𝑣𝑖 

 

 

e. 𝑣𝑗 is a 1-2 or 1-3 vertex and 
predecessor of 𝑣𝑖 

 

𝑉𝑖 

𝑉𝑗 

𝑉𝑖 

𝑉𝑗 

𝑉𝑖 

𝑉𝑗 

𝑣𝑖 

𝑣𝑗 

𝑣𝑖 𝑣𝑗 
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f. 𝑣𝑗 is a 1-2 or 1-3 vertex and 
independent of 𝑣𝑖 

 

 

2) 𝑣𝑖 is a 1-2 or 1-3 vertex 
→ it is always paired with 𝑣𝑖−1 

a. 𝑣𝑖−1 is a 2-2, 2-1 or 3-1 vertex 

 

 

b. 𝑣𝑖−1 is a 1-2, 1-3 vertex 
independent from 𝑣𝑖 

 

 

c. 𝑣𝑖−1 is a 1-2 or 1-3vertex 
predecessor of 𝑣𝑖 
→ We have a row pair if both of 
the following conditions hold: 
 - The edge (𝑣𝑖−1,𝑣𝑖) has 
not absorbed any 1-1 vertices of 
𝐺 
 - Either 𝑣𝑖 is connected 
later to another vertex 𝑣𝑗 which 
is 1-1, 1-2, 1-3 OR 𝑣𝑖 is 
connected later to a 2-2 vertex, 
which is the second vertex of a 
pair of type 1.d) OR 1.e) 

 

𝑣𝑖 𝑣𝑗 

𝑣𝑘 𝑘 < 𝑗 
𝑣𝑘 other predecessor of 

 

𝑣𝑖 

𝑣𝑗 

Reuse column as in cases 1a – 1c 

𝑣𝑖 𝑣𝑖−1 
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e. 𝑣𝑖−1 id a 1-2 or 1-3 vertex and at 
least one of the conditions of 
2.c) does not hold 

 

 

ALGORITHM 6 – STEP 6 
Place absorbed vertices on bends or grid points 
where are no crossings. If not possible: 
introduce new rows. 
 
LEMMA 
• Suppose there is a total of 𝑝1column pairs, 

𝑝2 unassigned degree 2 vertices, 𝑝3 
unassigned degree 3 vertices in 𝐺: 
Let 𝑘1 = 𝑝1 + 𝑝2 + 𝑝3

2
 then Algorithm 6 

produces a drawing of width at most 
𝑛 + 1 − 𝑘1 

• Suppose that 𝑘2 is the number of row pairs 
in 𝐺 then Algorithmen 6 produces a drawing 
of height at most 𝑛 + 1 − 𝑘2 if 𝑘2 ≥ 1 OR 𝑛 
if 𝑘2 = 0 

 
THEOREM 
Let 𝐺 be a biconnected graph 𝐺 with 𝑛 vertices 
and maximum degree 4. Algorithm 6 Four-
Orthogonal constructs an orthogonal grid 
drawing Γ of 𝐺 in linear time 𝑂(𝑛) such that: 
• Γ has area at most 0.77𝑛2 + 𝑂(𝑛) 
• Γ has a total number of 2𝑛 + 4 bends 
• No edge of Γ has more than 2 bends 

 
RUNNING TIME 
• Insert rows on top of existing drawing → 

easy 
• Insert columns anywhere → problem 

 
Solution: Order maintenance problem 

 

𝑣𝑖 𝑣𝑖−1 

𝑣𝑗 

𝑣𝑖 

𝑣𝑖−1 

𝑣𝑖+1 
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Insert(𝑥,𝑦): Insert 𝑦 directly after 𝑥 
Delete(𝑥):  
Order(𝑥,𝑦): True if 𝑥 is before 𝑦 in the list. 
  False if not 
 
All operations: 𝑂(1) time 
 

3.2 Orthogonal drawings with maximum-degree > 4 

 

Better: Each vertex is drawn as rectangular box 
with 4 sides lying on the grid. Each side (except 
bottom) has a number of connections with 
integer coordinates where incident edges are 
attached. 

 

 

ALGORITHM 
• Insert vertices in st-ordering 
• Decide size/exact placement of vertex when 

inserting 
 
SIZE 
• All outgoing edges connect to the top of the 

box 
• Incoming edges are split between the left 

side �indeg(𝑣)
2

� and the right side �indeg(𝑣)
2

� of 
the box 

 

 

𝑣1 𝑣1_1 𝑣1_2 

𝑣 
vertex 

top 

left right 

bottom 

corner 
connectors 

side 
connectors 
(edge) 
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POSITION 
Columns: 
• Order all columns of the current drawing 

from left to right (including all columns with 
incoming edges) compute the columns 𝐶1, 
𝐶2 containing the median incoming edges of 
𝑣. 

• Insert needed amount of columns for 𝑣 
between 𝐶1 and 𝐶2 (one median 𝐶: right 𝑐) 

 
Rows: 
• Insert needed amount on top of the existing 

drawing. 
FINAL 
• Put box in the newly created space 
• Connect all incoming edges from column 𝐶1 

and left to the left side; all incoming edges 
from column 𝐶2 and right to the right side 
of the box 

 
Given a graph with 𝑚 edges and st-ordering 
⇒  width ≤ 𝑚 + 𝑛𝑜𝑢𝑡1 
           number of vertices 
           with outdegree = 1 
 height ≤ 𝑚

2
+ 𝑛𝑜𝑑𝑑

2
+ 𝑛𝑖𝑛1 + 𝑛𝑖𝑛2 

           number of vertices 
           with odd degree 
 

 

IMPROVE 
Rows/columns may be shared. Vertices of 
degree 2 and some of degree 3, 4 can be 
represented as points. 
 
THEOREM 
Let 𝐺 be a graph with 𝑚 edges and an st-

 

𝑣2 

𝑣4 

𝑣3 

𝑣1 
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numbering. There exists an Algorithm that 
produces an orthogonal gridding Γ of 𝐺, by 
representing the height degree vertices as 
boxes. Γ can be computed in 𝑂(𝑚) time and it 
has the properties: 
• The perimeter of each vertex is proportional 

to its degree 
• Width of Γ is at most 𝑚− 1 
• Height of Γ is at most 𝑚

2
− 2 

• Each edge has at most one bend 
• Total number of bends is at most 𝑚 − 𝑛𝑜𝑢𝑡1 

 
   number of vertices 
   with out-degree = 1 
 
 

4.1 Layered drawings of digraphs 
Given:  Digraph 𝐺 
Wanted:  Layered polyline drawing Γ of 𝐺 
Steps: 

0. Cycle Removal (Preprocessing) 
Temporarily reverse edge 
directions to make 𝐺 acyclic 
 

1. Layer assignment 
Assign vertices to horizontal 
layers (y- coordinates) 
 

2. Crossing Reduction 
Order vertices within layers to 
reduce crossings 
 

3. Assign x-coordinates 
 

4. If necessary put cycles back in 

 

 

4.1.1 Layer assignment 
DEFINITION 
Suppose that 𝐺 = (𝑉,𝐸) is a cyclic digraph: 
• A layering of 𝐺 is a partition of 𝑉 into 

subsets 𝐿1,𝐿2, … , 𝐿𝑛 such that: 
If (𝑢, 𝑣) ∈ 𝐸 where 𝑢 ∈ 𝐿𝑖, 𝑣 ∈ 𝐿𝑗, then 
𝑜 > 𝑗 

• The height of such a layering is the number 
of layers ℎ 

• 𝐺 is then called a (h-)layered digraph 
• The width of a layered digraph is the 
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number of vertices in the largest layer 
max
1≤𝑖≤ℎ

|𝐿𝑖| 
• The span of an edge (𝑢, 𝑣)with 𝑢 ∈ 𝐿𝑖, 

𝑣 ∈ 𝐿𝑗  is 𝑜 − 𝑗 
• In a proper digraph, all edges have span = 1 

 
REQUIREMENTS OF LAYERING 
• Compactness (small width/height) 
• Proper (if not insert dummy vertices on 

“long” edges) 
• Small number of dummy vertices 

̶ Running times depend on all vertices 
̶ Bends occur only at dummy vertices 

 

MINIMUM HEIGHT LAYERING 
ALGORITHM 7 - LONGEST PATH LAYERING 
Input: Reduced, acyclic graph 𝐺 
Output: Layering of 𝐺 with minimum height 

1. Place all sinks in 𝐿1 
2. Each remaining vertex 𝑣 is placed in layer 

𝐿𝑝+1 where the longest path from 𝑣 → sink 
has length 𝑝 

 

 

Properties of the drawing produces b 
 Algorithm 7: 
 
 J Linear time 
 J Minimum number of layers 
 L Drawings may be too wide 
 
MINIMUM WIDTH LAYERING 
Finding a layering with minimum height and 
minimum width → NP complete 
 
⇒ Heuristic that gives a layering with width at 

 

dummy 

𝐿4 

𝐿3 

𝐿2 

𝐿1 
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most 𝑤 and height at most ℎ ≤ �2 − 2
𝑤
�ℎmin . 

ℎmin minimum height of layering of width 𝑤. 
 
NOTE 
Width of layering does not take dummy vertices 
into account! 
 
ALGORITHM 8 – COFFMAN-GRAHAM LAYERING 
Input: Reduced digraph 𝐺 = (𝑉,𝐸) and 
 𝑤 ∈ ℕ 
Output: Layering of 𝐺 with width 𝑤 
 

1. Initially, all vertices are unlabeled 
2. For 𝑜 = 1 to |𝑣| do 

a. Choose unlabeled vertex 𝑣 such that 
{𝜋(𝑢)|𝑢, 𝑣 ∈ 𝐸} is minimized 

b. 𝜋(𝑣) = 𝑜 
 

3. 𝑘 = 1, 𝐿1 = ∅, 𝑈 = ∅ 
4. While 𝑈 ≠ 𝑉 do 

a. Choose 𝑢 ∈ 𝑉 − 𝑈 such that every 
vertex in {𝑣|(𝑢, 𝑣) ∈ 𝐸} is in 𝑈 and 
𝜋(𝑢) is maximized 

b. If |𝐿𝑘| < 𝑤 and for every edge (𝑢, 𝑣), 
𝑥 ∈ 𝐿1 ∪ …∪ 𝐿𝑘−1 then add 𝑢 to 𝐿𝑘 
else 𝑘 = 𝑘 + 1, 𝕃𝑘 = {𝑢} 

c. Add 𝑢 to 𝑈 
 
DETAILS TO ALGORITHM 8 – STEP 2 
Algorithm 8 uses lexicographic order defined on 
finite sets of integer > 0. The largest item of the 
set is the most significant! 
 

{1,4,7} < {3,𝟖} 
{1,5,𝟖, 9} > {3,4,9} 

 
EXAMPLE 

 

1 2 

3 4 5 6 

7 8 9 10 

12 11 

13 𝑈 
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Minimize number of dummy vertices 
Suppose each vertex 𝑢 has a y-coordinate 𝑦(𝑢) 
with the properties: 
 

1. 𝑦(𝑢) is an integer ∀𝑢 
2. 𝑦(𝑢) ≥ 1    ∀𝑢 
3. 𝑦(𝑢) − 𝑦(𝑣) ≥ 1 for each edge (𝑢, 𝑣) 

 
The function 𝑦 defines a layering with 
𝐿𝑚 = {𝑢 ∈ 𝑉|𝑦(𝑢) = 𝑚}. Let 
𝑓 = ∑ (𝑦(𝑢) − 𝑦(𝑣) − 1)(𝑢,𝑣)∈𝐸  be the sum of 
the vertical spans of the edges in this layering 
minus the number of edges. 
 
The layer assignment problem is reduced to 
choosing y-coordinates to minimize 𝑓 subject to 
conditions 1-3 integer linear problem  
⇒ Polynomially solvable 

 

 

4.1.2 Crossing reduction 
OBSERVATION 
The number of edge crossings in a layered 
digraph does depend only on the ordering of the 
vertices. 

 

 

⇒ Combinatorial problem! 
 
Minimize edge crossings in a layered digraph 
⇒ NP complete 

 

 

  

𝐿7 

𝐿6 
𝐿5 
𝐿4 
𝐿3 
𝐿2 
𝐿1 dummy vertices 

𝑤 = 3 

1 

2 3 
4 5 

6 7 8 
10 
12 
13 

9 

11 

𝐿2 

𝐿1 

𝑎 𝑏 𝑐 𝑎 𝑏 𝑐 

⟺ 
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LAYER-BY-LAYER SWEEP 
DEFINITION 
A two layered digraph is a bipartite digraph 
𝐺 = {𝐿1,𝐿2,𝐸) consisting of disjoint vertex sets 
𝐿1,𝐿2 and a set 𝐸 ⊆ 𝐿1,𝐿2 of edges. 

 

 

 

We specify vertex orderings by giving unique x-
coordinates 𝑥𝑖(𝑢) to each vertex 𝑢 ∈ 𝐿1; 𝑜 = 1,2 
 
DEFINITION 
• The number of crossings in a digraph of 𝐺 

specified by 𝑥1,𝑥2 is cross(𝐺, 𝑥1, 𝑥2) 
• The minimum number of crossings, when 

the vertices of 𝐿1 are ordered by 𝑥1 is 
opt(𝐺, 𝑥1) 

 
It holds: 𝑜𝑝𝑡(𝐺, 𝑥1) = min𝑥2 cross(𝐺, 𝑥1,𝑥2) 
 
DEFINITION 
We define the two-layer crossing problem as 
follows. Given a two layered graph 
𝐺 = (𝐿1,𝐿2,𝐸) and an ordering 𝑥1 on 𝐿1 find an 
ordering 𝑥2 on 𝐿2 such that cross(𝐺, 𝑥1,𝑥2) =
opt(𝐺, 𝑥1) 
 ⇒ NP-Complete 
 
DEFINITION 
Let 𝑢, 𝑣 be distinct vertices in 𝐿2. The crossing 
number 𝐶𝑢𝑣 (for 𝑢 ≠ 𝑣 ∈ 𝐿2) is the number of 
pairs (𝑢,𝑤), (𝑣, 𝑧) of edges with 𝑥1(𝑤) > 𝑥2(𝑧) 
& 𝑥2(𝑢) < 𝑥2(𝑣) & 𝐶𝑢𝑣 = 0. 
 
EXAMPLE 

 

 

  

𝐿2 

𝐿1 
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 𝑝 𝑞 𝑢 𝑡 

𝑝 0 2 1 1 

𝑞 5 0 6 3 

𝑢 6 9 0 6 

𝑡 2 3 2 0 

 

 

 

LEMMA 
If 𝐺 = (𝐿1,𝐿2,𝐸) is a 2-layer digraph and 𝑥1,𝑥2 
are orderings of 𝐿1 and 𝐿2 then 

cross(𝐺, 𝑥1,𝑥2) = � 𝐶𝑢𝑣
𝑥2(𝑢)<𝑥2(𝑣)

 

Further: 

opt(𝐺, 𝑥1) ≥� min(𝐶𝑢𝑣,𝐶𝑣𝑢)
𝑢,𝑣

 

Where the sum is over all unordered pairs {𝑢, 𝑣 } 
of vertices in 𝐿2. 
 
Sorting methods 
• Adjacent exchange 

o Scan the vertices of 𝐿2 from left to 
right, exchanging all adjacent vertices 
𝑢, 𝑣 if 𝐶𝑢𝑣 > 𝐶𝑣𝑢; until the number of 
crossings does not reduce (“Bubble 
Sort”) 
 

 

𝐿2 

𝐿1 

𝑝 𝑞 𝑢 𝑡 

1 2 3 4 5 6 7 

𝐿2 

𝐿1 

𝑡 𝑢 𝑞 𝑝 

1 2 3 4 5 6 7 

order of vertices 
is 𝑝, 𝑞,𝑢, 𝑡 

order of vertices 
is 𝑡,𝑢, 𝑞,𝑝 
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• Split 
o Choose pivot vertex 𝑝 ∈ 𝐿2 
o For each vertex 𝑢 ∈ 𝐿2   𝑢 ≠ 𝑝 do: 

 If 𝐶𝑢𝑝 < 𝐶𝑝𝑢 
  Then place 𝑢 ∈ 𝑉left 
  Else place 𝑢 ∈ 𝑉right 

o Recurs on 𝑉left/right concatenate 
(“Quicksort”) 

 
Problem with sorting methods: Both need pre 
compute of crossings array! 
 
AVERAGING METHOD 
• Barycenter Method 

𝑥2 is the barycenter for all 𝑢 ∈ 𝐿2. 

avg(𝑢) =
1

deg(𝑢) � 𝑥1(𝑣)
𝑣∈𝑁𝑢

 

 
   neighbors of 𝑢 
 
If two vertices have the same barycenter, 
we separate them arbitrarily by a small 
amount. The number of crossings achieved 
is avg(𝐺, 𝑥1) 
 

• Median method 
If the neighbors of 𝑢 ∈ 𝐿2 are 𝑣1,𝑣2, … , 𝑣𝑗 
with 𝑥1(𝑣1) < 𝑥1(𝑣2) < ⋯ < 𝑥1�𝑥𝑗� then 
we define med(𝑢) = 𝑥1�𝑣⌊𝑗 2⁄ ⌋�. 
If 𝑢 has no neighbors, med(𝑢) = 0. 
We order the vertices of 𝐿2 by sorting them 
on med(𝑢). 
If med(𝑢) = med(𝑣), and say deg(𝑣) is 
odd and deg(𝑢) is even, then 𝑥2(𝑣) <
𝑥2(𝑢). 
If both degrees are odd or even, we place 𝑢 
and 𝑣 arbitrarily. 
The number of crossings achieved is 
med(𝐺, 𝑥1) 

 
THEOREM 
Suppose that 𝐺 = (𝐿1,𝐿2,𝐸) is a two-layer 
digraph and 𝑥1 is an ordering of 𝐿1, if 
opt(𝐺, 𝑥1) = 0 then avg(𝐺, 𝑥1) = med(𝐺, 𝑥1) =
0. Neither method gives an optimal solution in 
all cases! 
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WORST CASE BARYCENTER  

 

WORST CASE MEDIAN  

 

APPLICATION-HYBRID APPROACH 
1. Initial ordering with median method 
2. Tiebreak with barycenter method 
3. Define the output with adjacent exchange 

 

 

4.1.3 Horizontal coordinate assignment 
Consider the directed path 
𝑝 = (𝑣1,𝑣2, … , 𝑣𝑘−1,𝑣𝑘) where 𝑣2, … , 𝑣𝑘−1 are 
dummy vertices. If this path was drawn straight, 
then the x-coordinates of the dummy vertices 𝑣 
would satisfy: 

𝑥(𝑣𝑖) − 𝑥(𝑣1) −
𝑜 − 1
𝑘 − 1 �

𝑥(𝑣𝑘)− 𝑥(𝑣1)� 
For each of these path 𝑝 corresponding to an 
edge with span > 1, we define 

𝑜(𝑝) = ��𝑥(𝑣𝑖) −
𝑜 − 1
𝑘 − 1 �𝑥

(𝑣𝑘) − 𝑥(𝑣1)� + 𝑥(𝑣1)�
2𝑘−1

𝑖=2

 

To make the edges as trait as possible, we 
minimize the global sum ∑𝑜(𝑝) over all paths of 
dummy vertices subject to the constraints 
𝑥(𝑤)− 𝑥(𝑧) ≥ 𝛿 for all pairs 𝑤, 𝑧 of vertices in 
the same layer (𝑤 right of 𝑧). 
 
Constraints ensure: 

- Ordering is maintained 
- Minimal horizontal distance of 𝛿 between 

vertices 
 
Add further constraints: 

- X-coordinates lie within width boundary 

 

𝐿2 

𝐿1 

𝑢 𝑣 

 

𝑘2 − 1 𝑘 − 1 

𝐿2 

𝐿1 

𝑢 𝑣 

𝑘 𝑘 + 1 
   

𝑘 + 1 𝑘 
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5.1 Label placement 
ASSUME 
Drawing is fixed, may not be changed. 
 
DEFINITION 
A label is a textural description that conveys 
information or clarifies the meaning of complex 
structures presented in graphical form. 
Let Γ be a drawing and 𝐹 the set of features to 
be labeled. A solution to the labeling problem 
for Γ assigns labels to each feature 𝑓 ∈ 𝐹 such 
that the relevant information is communicated 
“in the best possible way”. This can be achieved 
by positioning the labels “in the most 
appropriate place”. For each feature there is a 
large number of potential label positions, the 
labeling space. 

 

 

LABEL QUALITY EVALUATION 
Basic rules: 

1. No overlap of a label with other labels or 
features 

2. Each label can be easily identified with 
exactly one feature in the drawing 

3. Each label must be placed in the best 
possible position (among all acceptable 
ones) 

 

 

DEFINITION 
Given a set 𝐹 of graphical features to be labeled, 
we define: 
Λ is the set of all label positions 
Λ𝑓 the set of all label positions for feature 

𝑓 ∈ 𝐹 

 

2 1 

3 4 
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𝜆 𝐹 → Λ a function assigning a label position 
to a feature in example Λ(𝑓) = 𝜆𝑓 ∈ Λ𝑓 

 
OPTIMIZATION PROBLEM 
Each label position is associated with a cost 
function: Λ → ℕ. Cost is determined with 
respect to the quality of a label position. We 
want to find a label assignment to all features 
that minimizes the total cost. 
 
THE LABELING PROBLEM 
Given:  Set of features  𝐹 
Find: Label assignment minimizing 
 ∑ ∑ cost�𝜆(𝑜)� ∗ 𝑃(𝑜, 𝑗)𝑗∈Λ𝑖∈𝐹  where 

 𝑃(𝑜, 𝑗) = �1   𝜆(𝑜) = 𝑗    
0   otherwise

 

 And ∑ ∑ 𝑃(𝑜, 𝑗) = |𝐹|𝑗∈Λ𝑖∈𝐹  where 
 ∑ 𝑃(𝑜, 𝑗) = 1      𝑜 ∈ 𝐹𝑗∈Λ𝑖  
 

5.2 Graphical feature label placement 
 

Most general method! 
 
ALGORITHM 9 – BASIC LABELING 
Input:  A drawing Γ and a set of objects 𝐹 to 
 be labeled. 
Output: A label assignment free of overlaps 
 
1. Select label positions for each object 
2. Remove heavily overlapping labels; Group 

overlapping labels together 
3. Final label assignment: Solve a matching 

problem 
 
HEURISTICS TO SELECT LABEL POSITIONS 
Points: Label positions touching the 
 corresponding point. 

 

 

Edges: Define a number of equally spaced 
 points on the edge. Each label position 
 is associated with exactly one of those 

 

 

  

   

    

  
  

  
  

4: 8: 
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 points and touches it in a corner: 

 

REDUCING THE NUMBER OF LABELS 
Create an intersecting graph: Each label position 
is a node, if 2 positions intersect, we add an 
edge. Finding intersections between 𝑛 labeling 
rectangles: 𝑂(𝑛 log𝑛 + 𝑘) 
 
Goal: Reduce the intersection graph to a set 
 of disconnected subgraphs. 
 
Preprocessing: Remove all label positions that 
  add to the complexity of the 
  problem without (potentially) 
  improving the solution. 
 
EXAMPLE 

 

 

MAIN STEP 
If a subgraph 𝐶 must be split, we remove the 
node with highest degree. 
Unless it corresponds to a label position of some 
object with very few label positions. → Choose 
second highest degree. 
Repeat until 𝐶 is split in two disjoint subgraphs 
or 𝐶 is a complete graph. 
 
MATCHING LABELS TO OBJECTS 
DEFINITION 
Given a drawing Γ, a set 𝐹 of graphical features 
to be labeled, and a set Λ of label positions for 

 

 
 

         
  

  
  

  

1 

2 
3 

4 

5 6 7 

12 
11 

10 
9 

8 

2 1 

3 4 

 

  

⇒ Remove 3 & 4. 
Keep 1 for later 
possible use 
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𝐹. Then we define the matching graph  
𝐺𝑚�𝑉𝑓 ,𝑉𝐶 ,𝐸𝑚�: 
• Each node 𝑓 ∈ 𝑉𝑓 corresponds to a feature 
𝑓 ∈ 𝐹 

• Each node 𝑐 ∈ 𝑉𝐶 corresponds to a group of 
overlapping labels 

• Each edge (𝑓, 𝑐) ∈ 𝐸𝑚 connects a node 
𝑓 ∈ 𝑉𝑓 to a node 𝑐 ∈ 𝑉𝑐 iff 𝑓 ∈ 𝐹 has a label 
position that is a member of group 𝐶 

• 𝐺𝑚 is bipartite! 
• The cost of assigning label 𝑙 to feature 𝑓 is 

the weight of edge (𝑓, 𝑙) ∈ 𝐸𝑚 
• The size of 𝐺𝑚 depends 

o On the size of the input drawing �𝑉𝑓� 
o On the size of the set of labels (𝑉𝐶) 
o On the density of the overlaps (𝐸𝑚) 

 
A final label assignment can be found by 
computing the maximum cardinality minimum 
weight matching on 𝐺𝑚. This can be done in 
𝑂(𝑛2.376) randomized time. Or in 𝑂�√𝑛 ∗ 𝑚� 
deterministic time. 
    #nodes    #edges 
 
EXAMPLE 

 

  

2 1 

3 4 

2 1 

3 4 

2 1 

3 4 

2 1 

3 4 

𝐴  𝐵  𝐶  𝐷 
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Create the intersection graph:  

 

Simplify! Remove all nodes with degree ≥ 3 
⇒ 𝐴4 & 𝐷2 
Create the matching graph: 

 

 

Find maximum cardinality minimum weight 
matching on 𝐺𝑛 
 
SOLUTION 

 

 

𝐴1 

𝐴2 

𝐴3 

𝐴4 

𝐷4 𝐷3 𝐷2 𝐷1 
𝐶4 

𝐶3 

𝐶2 

𝐶1 
𝐵1 𝐵2 𝐵3 𝐵4 

𝐴 𝐵 𝐶 𝐷 

𝐴2 𝐴1 
𝐶2 
𝐶3 

𝐴3 
𝐵2 

𝐵3 𝐵1 
𝐵4 
𝐷3 

𝐶1 𝐶4 
𝐷1 

𝐷4 

1 

1 

1 

1 

𝐴  𝐵  𝐶  𝐷 
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5.3 Edge label placement (ELP) 
ASSUMPTION 

1. All labels have the same height 
2. Each edge has only one label assigned to it 

 
WANTED 
Assign to each edge a label position free of 
overlaps, that touches only “its” edge. Finding 
the initial set of label positions. 
• Divide the input drawing into consecutive 

horizontal strips of equal height =�  height of 
labels 

• Each label must lie fully inside one 
horizontal strip. → “Slide” the label inside 
the strip until it touches the correct edge. 

• A label is only included in Λ𝑒 if it does not 
overlap any other graphical features. 
Overlapping other label positions is 
allowed. 

 
EXAMPLE 

 

 

OBSERVATIONS 
• A label position of edge 𝑒 does not overlap 

any other label position of 𝑒 
• If to label positions overlap, they must lie 

inside the same horizontal strip 
• Each label position overlaps at most one 

label position 
 
ALGORITHM 10 – EDGE LABELING 
Input: A drawing Γ of graph 𝐺 = (𝑉,𝐸) 
 
Output: A label assignment to the edge 
 without overlap 
 

1. Split Γ into horizontal strips of label heights 
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2. Find all label positions for each edge and 
construct the groups of overlapping labels 

3. Construct the matching graph 𝐺𝑚 of Γ 
4. Match label positions to edges: 

- Find maximal cardinality 
- Minimum weight matching of 𝐺𝑚 

 
In 𝐺𝑚 each 𝑣𝑐 has degree at most 2. 
→ Matching heuristic in linear time 
 
ALGORITHM 11 – FAST MATCHING 
Input: Matching Graph 𝐺𝑚 
 
Output: A maximum cardinality matching for 
 𝐺𝑚 with low total weight. 
 

1. If the minimum weight incident edge of 
𝑓 ∈ 𝑉𝑓 connects to 𝑐 ∈ 𝑉𝑐 with degree = 1, 
then: 

a. Assign this edge as matched edge 
b. Update 𝐺𝑚: 

• Remove 𝑓, 𝑐 and all incident 
edges 

• Store 𝑓, 𝑐, (𝑓, 𝑐) as part of the 
matching 

2. If a node 𝑓 ∈ 𝑉𝑓 has degree = 1 then: 
a. Assign its incident edge as matched 

edge 
b. Update 𝐺𝑚 

3. Repeat 1. & 2. Until no more edge can 
be matched 

4. Delete all nodes with degree = 0 from 
𝐺𝑚 

5. For each node 𝑓 ∈ 𝑉𝑓 do: 
 Remove all edges except the two 
 with lowest weight 

6. 𝐺𝑚 consists of simple path and cycles 
a. Find the 2 possible maximum 

cardinality matchings for each 
path/cycle 

b. Choose the matching with minimum 
weight 

 
 Easy! 
 Works well if the edges are long and 

vertical → Many potential label 
positions! Good for hierarchical and 
strait line drawings 

 
 Cannot deal with horizontal edges! 

→ Bad for orthogonal drawings 
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→ Solution: Add vertical strips 
 Some edges may get no label or 

outcome is not satisfactory. 
→ Solution: Manual tweaking 

 

5.4 Label Placement by drawing modification 
If we do not have a graphic or technical map, we 
can modify the drawing to help with label 
placement. 

1. Modify the existing layout to make room 
from the labels. (Open problem!) 

2. Produce a new drawing integrating the 
layout and the labeling process. → For 
orthogonal drawings 

 
TO NO. 2 
Given: Let 𝐺 be a planaer graph with 

orthogonal representation 𝐻. Let 𝐿 be a 
set of labels for the edges of 𝐺 (1 label 
per edge) modeled as axis parallel 
rectangle with given height and width. 

 
Want: A orthogonal grid drawing of 𝐺 such that 

the edges are labeled and have the 
shape defined in 𝐻. 

 
CONSTRAINTS AND GOALS FOR A “GOOD” DRAWING 

1. A label is drawn with one of its sides as a 
proper subset of its edge. 

 

 

2. A label of segment 𝑠 cannot overlap any 
other label, vertex or segment 

3. A good label placement minimizes the area 
of the drawing. This problem can be 
formulated as integer linear program and 
solved by heuristics (Branch & Cut) 
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6.1 Rectangular cartograms1 
DEFINITION 
A cartogram is a map where the size of a region 
is not the true size, but corresponds to a 
particular geographic variable (e.g. population). 
The geometry is usually distorted to convey the 
information of the alternate variable. “Value-by-
area” map. 
 

cartogram ↔ Kartenanamorphote 
thematic map ↔ Kartogramm 

 
GENERALS TYPES OF CARTOGRAMS 
• Contiguous area cartograms 

Have deformed regions so that the desired 
size can be obtained and the adjacencies 
kept. (standard model) 

• Non-contiguous area cartograms 
The region have their true shape, but are 
sealed down and generally do not touch 
anymore 

• Cartograms based on circles 
• Rectangular cartograms 

Each region is represented by a single 
rectangle 

• Hybrid cartograms 
Hybrid of the first and forth type: Regions 
are rectilinear polygons with small number 
of vertices 

 
RECTANGULAR CARTOGRAMS (1934) 
 Areas can be computed easily 
 
 Rectangular shape is less recognizable and 

imposes limitations to the possible layout 
 
QUALITY CRITERIA 
• Cartographic error for each region 

|𝐴𝐶 − 𝐴𝑠|
𝐴𝑠

 

𝐴𝑐 =area of the region in the cartogram 
𝐴𝑠 =area specified by the variable to be 
shown 

• Average and maximum cartographic error 
• Correct adjacencies of the rectangles 
• Maximum aspect ratio 
• Suitable relative positions 

 

 

                                                           
1 On Rectangular Cartograms, M. van Kreveld & B. Speckmann, www.cs.uu.nl/research/techreps/repo/CS-
2004/2004-040.pdf 

http://www.cs.uu.nl/research/techreps/repo/CS-2004/2004-040.pdf
http://www.cs.uu.nl/research/techreps/repo/CS-2004/2004-040.pdf
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DEFINITION 
• A rectangular partition of a rectangle 𝑅 is a 

partition of 𝑅 into a set 𝑆 of non-
overlapping rectangles such that no 4 
rectangles in 𝑆 meet in the same point. 

• A rectangular dual of a plane graph 𝐺 is a 
rectangular partition 𝑅 such that: 

1. There is a one-to-one 
correspondence between the 
rectangles in 𝑅 and the node in 𝐺 

2. Two rectangles in 𝑅 share a common 
boundary iff corresponding nodes in 
𝐺 are connected 

• A triangle is a cycle of 𝐺 consisting of 3 
areas 

• A cycle 𝐶 of 𝐺 divides the plane into an 
interior and an exterior region. If 𝐶 contains 
at least one vertex in its interior and 
exterior then 𝐶 is a separation cycle 

 
THEOREM 
A plane graph 𝐺 has a rectangular dual 𝑅 with 4 
rectangles on the boundary of ℛ if and only if 

1. Every interior face is a triangle and the 
exterior face is a quadrangle 

2. 𝐺 has no separating triangles 
 
NOTE 
• An error-free cartogram need not exist 

even if a rectangular dual does 
• A rectangular dual need not be unique 
• Planar graphs can always be represented 

with rectangles, L-shapes and T-shapes 
 

6.2 Algorithm 12 – Rectangular dual2 
DEFINITION 
A face graph 𝐹 of a map has a vertex for each 
region in the map and an edge between 2 
vertices iff their regions share a common 
boundary 
 
1. Preprocessing 

• Construct the face graph of the map 
• Triangulate all non-triangular faces of 𝐸 

 → Each triangulation leads to a different 
rectangular dual! 

 

                                                           
2 Regular edge labeling of 4-connected plane graphs and its applications in graph drawing problems, G. Kant, 
X. He, http://www.sciencedirect.com/science/article/pii/S030439759500257X 

http://www.sciencedirect.com/science/article/pii/S030439759500257X


 Graph Drawing 
Björn Gernert Vorlesungsaufzeichnungen 43/46 
 Wintersemester 2011/12  

• Process nodes of degree < 4 
→ Integrate these nodes into adjacent 
one 

• Degree 3: 

 

• Degree 2:  

 

• Degree 1:  

 

• Disconnected regions 
→ Choose one region to represent all 
 

2. Directed regular edge labels 
The directed edge labels give an adjacency 
direction between neighboring vertices of 𝐹. 
That follow from the relative geographic 
position of the respective regions. 

 

integrate 

BE 

LUX 

GER 

FR 

BE + LUX 

FR 

GER 
BE 

GER 

FR 

LUX 

→ BE becomes L-shaped in final cartogram 

integrate 

CN 

NP 

IN 

NP + IN 

CN CN 

IN 

NP 

→ IN becomes C-shaped in final cartogram 

LS 

ZA 

ZA + LS 
ZA 

LS 

→ ZA becomes O-shaped in final cartogram 
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HEURISTIC 
Consider the line through the centers of mass 
of the regions and its compass direction 

 

  

N 

E 

S 

W 
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We orient the directions from 
south → north (𝑇1) from west → east (𝑇2) 
 
OBSERVATION 
A face graph 𝐹 with directed regular edge 
labeling can be represented by a rectangular 
dual iff: 
1. Every internal region has at least 1 

neighbor on each compass direction 
2. When traversing the regions of any node 
𝑣 in clockwise order, starting at the west 
most northern neighbor, we encounter: 
• All north neighbors 
• All east neighbors 
• All south neighbors 
• All west neighbors 

→ “Realizable” edge labeling 
 

3. Rectangular layout 
• We add 4 outer nodes to 𝐹: 𝑁,𝐸,𝑊, 𝑆 

and edges: 𝑁-𝐸, 𝑁-𝑊, 𝑆-𝐸, 𝑆-𝑊 
• If necessary add “sea” regions to preserve 

shape and adjacencies 
→ New graph 𝐺 

• Construct x-coordinates 
a) Let 𝐺1 be the graph consisting of all 

vertices of 𝐺 and all edges of 𝑇1 plus 
the 4 exterior edges with directions 
𝑆 → 𝑊, 𝑊 → 𝑁, 𝑆 → 𝐸, 𝐸 → 𝑁 
⇒ 𝐺1 is a planar st-graph with 
source 𝑆 and sink 𝑁 

b) Associated dual st-graph 𝐺1∗: Let the 
source of 𝐺1∗ be the left face of 𝑊∗ 
and the sink the right face of 𝐸∗. For 
each node 𝑓 ∈ 𝐺1∗ let 𝑑1(𝑓) be the 
length of the longest path from 𝑊∗ 
to 𝑓; Let 𝐷1 ≔ 𝑑1(𝐸∗). 
For each interior vertex 𝑣: 

𝑥𝐿𝐸𝐹𝑇(𝑣) = 𝑑1�𝐿𝐸𝐹𝑇(𝑣)� 
𝑥𝑅𝐼𝐺𝐻𝑇(𝑣) = 𝑑1�𝑅𝐼𝐺𝐻𝑇(𝑣)� 

For the 4 exterior vertices: 
𝑥𝐿𝐸𝐹𝑇(𝑊) = 0 
𝑥𝑅𝐼𝐺𝐻𝑇(𝑊) = 1 
𝑥𝐿𝐸𝐹𝑇(𝐸) = 𝐷1 − 1 
𝑥𝑅𝐼𝐺𝐻𝑇(𝐸) = 𝐷1 
𝑥𝐿𝐸𝐹𝑇(𝑆) = 1 
𝑥𝑅𝐼𝐺𝐻𝑇(𝑆) = 𝐷1 − 1 
𝑋𝐿𝐸𝐹𝑇(𝑁) = 1 
𝑥𝑅𝐼𝐺𝐻𝑇(𝑁) = 𝐷1 − 1 
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• Constructing the y-coordinates 
Similar with 𝐺2. 𝐺2 consists of all vertices 
of 𝐺, all edges of 𝑇2,plus the exterior 
edges 𝐸 → 𝑆, 𝑆 → 𝐸, 𝑊 → 𝑁, 𝑁 → 𝐸 
𝐺2: source = 𝑊, sink = 𝐸 

 
THEOREM 
Let 𝐺 be a graph with realizable directed edge 
labeling we assign to each vertex 𝑣 ∈ 𝐺 the 
rectangle 𝑓(𝑣) bounded by lines: 

𝑋𝐿𝐸𝐹𝑇(𝑣),          𝑥𝑅𝐼𝐺𝐻𝑇(𝑣) 
𝑦𝐿𝑂𝑊(𝑣), 𝑦𝐻𝐼𝐺𝐻(𝑣) 

Then the set {𝑓(𝑣)|𝑣 ∈ 𝐺} forms a rectangular 
dual of 𝐺. If a relizable directed edge labeling is 
given, a rectangular dual takes 𝑂(𝑛) time. 
 

6.3 Main cartogram algorithm 
See handout! 
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