
 Graph Drawing
Björn Gernert Vorlesungsaufzeichnungen 1/46
 Wintersemester 2011/12

1.1 Layered Tree Algorithm

THEOREM
Let 𝑇 be a Binary Tree with 𝑛 vertices.
Algorithem 1 constructs a drawing 𝑇′of 𝑇 in
𝑂(𝑛) time such that 𝑇′ is layered, in example
the y-coordinate of each vertex is equal to minus
depth of the vertex.
• 𝑇′ is planar, straightline and strictly drawn
• 𝑇′ is embedding the presaving in example

the left-to-right order of each vertex is
preserved

• Any two vertices of 𝑇′ have horizontal and
vertical distance of at least 1

• The x-coordinates of a parent with 2
children is the average of the x-coordinate
of its children

• The area of 𝑇′ is 𝑂(𝑛2)

IMPLEMENTATION OF ALGORITHM 1

1. Postorder traveling of 𝑇 to recursively
compute for each vertex 𝑣 the horizon
displacement of its children with respect
to 𝑣

2. Preorder traveling of 𝑇 to compute x-
coordinates (accumulation of displacements
on path to root) and y-coordinates (depth)
of all vertices

DEFINITION
The left contour of a Binary Tree 𝑇 with height ℎ
is the sequenze of vertices 𝑣0, … , 𝑣𝑛 such that 𝑣𝑖
is the leftmost vertex of 𝑇 with depth i. Right
contour is symmetrically defined.

2

 Graph Drawing
Björn Gernert Vorlesungsaufzeichnungen 2/46
 Wintersemester 2011/12

3. Follow left contour of right subtree and
right contour of left subtree. ∀ vertices in
postorder traveling invariant. After
completing processing vertiex 𝑣, the right
contour and left contour of the subtrees
rooted at 𝑣 are stored in linked lists

CONSTRUCTING THE CONTOUR LISTS
Let 𝑇(𝑢) be the subtree rooted at 𝑣 and 𝑇′, 𝑇′′
be the left and right subtrees of 𝑣.

1. If 𝑇′ and 𝑇′′ have the same height, then the
left contour list of 𝑇(𝑣) is the left contour
of 𝑇′ plus 𝑣; the right conture of 𝑇(𝑣) is the
same as the right contour of 𝑇′′ plus 𝑣.

2. If the height of 𝑇′ < 𝑇′′ then the right
conture of 𝑇(𝑣) ist the same as the right
contour of 𝑇′′ plus 𝑣. Let ℎ′ be the height of
𝑇′; 𝑢 the bottemmost vertex on the left
contour of 𝑇′. Let 𝑤 be the vertex of the
left contour of 𝑇′′ with depht ℎ′ + 1. Then
the left contour of 𝑇(𝑣) consists of 𝑣, the
left contour of 𝑇′ and the partion oft he left
contour of 𝑇′′ beginning at 𝑤 and ending at
total height ℎ′′ of 𝑇′′.

left contour

right contour
left/right contour

𝑇′ 𝑇′′

𝑣

 Graph Drawing
Björn Gernert Vorlesungsaufzeichnungen 3/46
 Wintersemester 2011/12

3. Height of 𝑇′ > 𝑇′′ symmetric to 2.

⇒ Must travel down the contours of 𝑇′, 𝑇′′ only
as far as the height of the subtree with smaller
height.

⇒ The time spent processing vertex 𝑣 in the
postorder travel is proportional to the minimum
of the heights 𝑇′,𝑇′′.

Running time of postorder travel.:

�(1 + min{ℎ′(𝑣),ℎ′′(𝑣)})
𝑐∈𝑇

=

𝑛 + �min{ℎ′(𝑣),ℎ′′(𝑣)} = 𝑂(𝑛)
𝑣∈𝑇

1.2 Radial drawings

DEFINITION
A radial drawing is a variation of a layered
drawing where the root of the tree is placed at
the origin and layers are concentric circles
centered at the origin.

𝑇′

𝑇′′

𝑣

𝑤 ℎ′
ℎ′′

 𝑅

𝑐1
𝑐2
𝑐3
𝑐4

Find the root: pruning
1 vertex left → root
2 vertices left:

X 𝑤 𝑅 𝑣

 Graph Drawing
Björn Gernert Vorlesungsaufzeichnungen 4/46
 Wintersemester 2011/12

The children of 𝑣 are arranged on 𝑐𝑖 + 1
according to the number of leaves in their
resprective subtrees. That means for each child
of 𝑎 of 𝑣 the angle 𝛽𝑢 of 𝑊𝑢 is 𝛽𝑢 =
min (𝑙(𝑢)∗𝛽𝑣

𝑙(𝑣) , 𝜏)

1.3 Planarity testing
OBSERVATION
• A graph is planar if all its connected

components are planar
• A connected graph is planar, iff all its

biconnected components are planar

⇒

1. Eular planar?
2. Decompose graph in connected and

biconnected components

⇒ Algorithm works on biconnected components.

DEFINITION
Let 𝐺 be a biconnected graph given a cycle 𝐶 of
𝐺, we partition the edges of 𝐺\𝐶 into classes:

Two edges are in the same class if there is a path
between them that does not contain any vertex
of 𝐶. The subgraph induced by edges in one class
is a piece of 𝐺 w.r.t. 𝐶.

𝑣

𝑟

𝑢
𝑎 𝑏

𝑐𝑖 𝑐𝑖+1

𝐹𝑣

𝛽𝑣

 Graph Drawing
Björn Gernert Vorlesungsaufzeichnungen 5/46
 Wintersemester 2011/12

Two types of pieces:
• Single edge between two vertices of 𝐶

(𝑃3,𝑃4,𝑃5,𝑃6)
• Connected graph with at least 1 vertex not

in 𝐶 (𝑃1,𝑃2)

DEFINITION
• The vertices of a piece 𝑃 that are in 𝐶 are

called attachments of 𝑃
• A cycle 𝐶 of 𝐺 is separating, if it has at least

two pieces and nonseperating if it has none.
• If 𝐺 = 𝐶 then 𝐶 has no pieces

LEMMA
Let 𝐺 be a biconnected graph and let 𝐶 be a
nonseperating cycle of 𝐺 with piece 𝑃. If 𝑃 is not
a path, then 𝐺 has a seperaiting cycle 𝐶′
consisting of a subgraph of 𝐶 plus a path of 𝑃
between two attachments.

PROOF
Let 𝑢, 𝑣 be two attachments of 𝑃 that are
consecutive in the circular ordering and let 𝛾 be
a subpath of 𝐶 between 𝑢 and 𝑣 that does not
contain any attachments of 𝐶. 𝑃 is connected

𝑎0

𝑐
Piece 1

Piece 5
Piece 4

Piece 6

Piece 2
Piece 3

𝑢

𝑐

𝑣

𝑒

𝜋

𝛾

𝑃

+ − 𝛾 = 𝐶′

 Graph Drawing
Björn Gernert Vorlesungsaufzeichnungen 6/46
 Wintersemester 2011/12

⇒ ∃ path 𝜋 in 𝑃 between 𝑢 and 𝑣. Be the cycle
obtained by replacing 𝛾 with 𝜋. If 𝑃 is not a path
let 𝑐 be an edge of 𝑃 not 𝜋. There is a piece of 𝐶′
containing 𝑐 that is constructed from 𝛾. ⇒ 𝐶′ has
two pieces. ∎

If 𝐺 is planar, then in any planar drawing of 𝐺
each piece is drawn either completely inside or
outside of 𝐶.

DEFINITION
Two pieces of 𝐺 w.r.t. 𝐶 interlace if they cannot
be drawn on the same side of 𝐶 without
intersection.

DEFINITION
The interlacement graph 𝐼 of the pieces of 𝐺
w.r.t. 𝐶 is the graph with vertices representing
the pieces and the edges of interlacing pieces.

OBSERVATION
If 𝐺 is planar, then 𝐼 of the pieces w.r.t. cycle 𝐶
must be bipartite.

Piece 1

Piece 5
Piece 4

Piece 6

Piece 2
Piece 3

𝑃2

𝑃4

𝑃3

𝑃5 𝑃6

𝑃1

I

 Graph Drawing
Björn Gernert Vorlesungsaufzeichnungen 7/46
 Wintersemester 2011/12

⇒ Interlacing pieces must be drawn on opposite
sides of 𝐶.

THEOREM
A biconnected graph 𝐺 with a cycle 𝐶 is planar iff
it holds that:
• For each piece 𝑃 of 𝐺 w.r.t. 𝐶 the graph

obtained by adding 𝑃 to 𝐶 is planar
• The interlacement graph 𝐼 of the pieces of

𝐺 w.r.t. 𝐶 is bipartite

ALGORITHM 2 – PLANARITY TESTING
Input:
• Biconnected graph with 𝑛 vertices and

edges 𝑒: 𝑒 ≤ 3𝑛 − 6
• Separating cycle 𝑐

Output:
• Graph planar? yes/no

Algorithm:

1. Compute pieces of 𝐺 w.r.t. 𝐶
2. For each piece 𝑃 that is not a path:

a. Let 𝑃′ be the graph obtained by
adding 𝑃 to 𝐶

b. Let 𝐶′ be the cycle of 𝑃′ obtained
from 𝐶 by replacing the portion of 𝐶
between two consecutive
attachements with a path of 𝑃
between them

c. Apply Algorithm 2 recursively to 𝑃′
and cycle 𝐶′

3. Compute interlacement graph 𝐼 of the
pieces

4. Test whether 𝐼 is bipartite. If not return
“not planar”

5. Return “planar”

ACCORDING TO STEP 3 – INTERLACEMENT GRAPH
Given a piece 𝑃 with attachements 𝑎0, … ,𝑎𝑘−1
in this order around 𝐶, we label the vertices of 𝐶
with integers in the range of [0, 2𝑛 − 1]:
• Label 2 ∗ 𝑜 if it is an attachement of 𝑃
• Label 2 ∗ 𝑜 + 1 otherwise

A piece 𝑄 does not interlace with 𝑃 iff all its
attachements have labels that lie in the open
interval between two consecutive even
numbers.

 Graph Drawing
Björn Gernert Vorlesungsaufzeichnungen 8/46
 Wintersemester 2011/12

• Labeling of 𝐶: 𝑂(𝑛) time
• Testing whether 𝑄 interlaces with 𝑃 takes

time proportional to the number of
attachements of 𝑄 ≤ 1 + |𝐸(𝑄)|; all pieces
are edge-disjoint. → linear time

⇒ Step 3 takes 𝑂(𝑛2) time

Step 4 has 𝑂(𝑛) and 𝑂(𝑛2) edges. Test for
bipartiteness takes 𝑂(𝑛2) time.

⇒ 1 recursive call: 𝑂(𝑛2) time
⇒ 𝑂(𝑛) calls
⇒ Total running time of Algorithm 2: 𝑂(𝑛3)

2.1 Planar orientations
LEMMA
Let 𝐺 be a planar st-graph. Each face of 𝐺
consists of two directed paths with common
origin [orig(𝑓)] and destination [dest(𝑓)]. The
following property is “dual” to the one above.

LEMMA
For each vertex 𝑣 of a planar st-graph, the
incoming edges appear consecutively around 𝑣,
and so do the outgoing edges.

𝑎0 = 𝑣0

𝑣1

𝑎1 = 𝑣2

𝑣3 𝑎2 = 𝑣4

𝑎3 = 𝑣5

𝑣7

𝑣6

0

3

4

7 8

10

13

15

𝑄 𝑃 𝑆

𝑅

 Graph Drawing
Björn Gernert Vorlesungsaufzeichnungen 9/46
 Wintersemester 2011/12

LEMMA
For any two faces 𝑓,𝑜 of a planar st-graph
exactly one of the following holds:
• 𝐺 has a directed path from 𝑑𝑒𝑠𝑡(𝑓) →

𝑜𝑟𝑜𝑜𝑛(𝑜)
• 𝐺 has a directed path from 𝑑𝑒𝑠𝑡(𝑜) →

𝑜𝑟𝑜𝑜(𝑓)
• 𝐺∗ has a directed path from 𝑓 → 𝑜
• 𝐺∗ has a directed path from 𝑜 → 𝑓

PROOF
Consider topological sorting of 𝐺; w.l.o.g.
(without loss of generality) assume #dest(𝑓) <
#orign(𝑜). We call a path from a vertex 𝑣 ∈ 𝐺
that always takes the leftmost/rightmost
outgoing edge the leftmost/rightmost path from
𝑣
• 𝑃1 leftmost path from dest(𝑓) → 𝑡
• 𝑃2 rightmost path from dest(𝑓) → 𝑡
• 𝑃3 leftmost path from dest(𝑜) → 𝑡
• 𝑃4 rightmost path from dest(𝑜) → 𝑡

if there is a directed path from dest(𝑓) →
orig(𝑜). Otherwise, either 𝑃2 crosses 𝑃3 or 𝑃1
crosses 𝑃4 at a common vertex 𝑥.

Then every edge incident to any vertex in 𝑃2
from the right side is incoming and every edge
incident to any vertex in 𝑃3 from the left side
is incoming.
⇒ Because of the construction of 𝐺∗ there is a
directed path in 𝐺∗ 𝑓 → 𝑜 ∎

dest(𝑓)

𝑜𝑟𝑜𝑜(𝑜)

𝑥

𝑡

𝑃2 𝑃3

𝑓
𝑜

 Directed path from 𝑓 to 𝑜

𝑥: First vertex at witch 𝑃2,
 𝑃3 intersect

 Graph Drawing
Björn Gernert Vorlesungsaufzeichnungen 10/46
 Wintersemester 2011/12

An element of 𝑉 ∪ 𝐸 ∪ 𝐹 in 𝐺 is an object of
𝐺. For a vertex 𝑣:
• orig(𝑣) = dest(𝑣) = 𝑣

For a face 𝑓:
• left(𝑓) = right(𝑓) = 𝑓

LEMMA
For any two objects 𝑜1,𝑜2,𝑜3 of a planar st-
graph, exactly one of the following holds:
• 𝐺 has a directed path from dest(𝑜1) →

orig(𝑜2)
• 𝐺 has a directed path from dest(𝑜2) →

orig(𝑜1)
• 𝐺∗ has a directed path from right(𝑜1) →

left(𝑜2)
• 𝐺∗ has a directed path from right(𝑜2) →

left(𝑜1)

2.2 Constrained visibility representations
DEFINITION
Two horizontal segments are visible if they can
be joined by a vertical segment that does not
intersect any other horizontal segment.

DEFINITION
Let 𝐺 be a planar st-graph, 𝐻 a visibility
representation Γ of 𝐺 draws each vertex 𝑣 as
horizontal vertex segment Γ(𝑣) and each edge
(𝑢, 𝑣) as vertical edge segment Γ(𝑢, 𝑣) such
that:

• Vertex segments do not overlap
• Edge segments do not overlap
• An edge segment Γ(𝑢, 𝑣) has its bottom

endpoint on Γ(𝑢). Its top endpoint on
Γ(𝑣) and does not intersect any other
vertex segments.

visible not visible visible

 Graph Drawing
Björn Gernert Vorlesungsaufzeichnungen 11/46
 Wintersemester 2011/12

DEFINITION
A visible representation is constrained if some
predefined edges have the same x-coordinates.

DEFINITION
Let 𝐺 be a planar st-graph with 𝑛 vertices. Two
parts 𝜋1,𝜋2 of 𝐺 are nonintersecting if they are
edge disjoint and do not cross at a common
vertex.

ALGORITHM 3 – CONSTRAINED VISIBILITY
Input:
• Planar st-graph 𝐺 with vertices
• A set Π of nonintersecting 𝐺paths covering

𝐸(𝐺)
Output:
• Constrained visibility representation Γ of 𝐺

with integer coordinates and area 𝑂(𝑛2)

1. Construct 𝐺Π with
• Vertex set 𝐹 ∪ Π
• Edge set

{(𝑓,𝜋)|𝑓 = left(𝑒)for some edge

u

v

w
Γ(𝑤)

Γ(𝑣)

Γ(𝑢)

Γ(𝑢,𝑤)

noncrossing crossing

 Graph Drawing
Björn Gernert Vorlesungsaufzeichnungen 12/46
 Wintersemester 2011/12

𝑒 of path 𝜋} ∪ {(𝑓,𝜋)|𝑜 =
right(𝑒) for some edge 𝑒 of path 𝜋}

2. Assign unit weights to the edges of 𝐺 and
compute an optimal topological numbering.
𝑌 of 𝐺 with 𝑌(𝑠) = 0.

3. Assign half-unit weights to the edges of 𝐺Π
and compute an optimal topological
numbering 𝑋 of 𝐺Π such that 𝑋(𝑠∗) = −1

2
.

4. For each path 𝜋 ∈ Π do:
 For each edge 𝑒 ∈ 𝜋 do:
 draw Γ(𝑒) as vertical segment:
 𝑥�Γ(𝑒)� = 𝑋(𝜋)
 𝑦𝐵�Γ(𝑒)� = 𝑌�orig(𝑒)�
 𝑦𝑇�Γ(𝑒)� = 𝑌�dest(𝑒)�

5. For each vertex 𝑣 ∈ 𝐺 do:
 draw Γ(𝑣) as horizontal segment with:
 𝑦�Γ(𝑣)� = 𝑌(𝑣)
 𝑥𝐿�Γ(𝑣)� = min𝑣∈𝜋 𝑋(𝜋)
 𝑥𝑅�Γ(𝑣)� = max𝑣∈𝜋 𝑋(𝜋)

𝑡

𝑠

0

1

2

3 3

4

4

4
5

-0,5

1,5

0,5 2,5

3,5
4,5

5,5

6,5

7,5
0 1 2 3

4

5

6

7

 Faces of 𝐺 Path of Π

 Graph Drawing
Björn Gernert Vorlesungsaufzeichnungen 13/46
 Wintersemester 2011/12

LEMMA
The digraph 𝐺Π constructed in step 1 of
Algorithm 3 is a planar st-graph.

THEOREM
Let 𝐺 be a planar st-graph with 𝑛 vertices and let
Π be a set of nonintersecting paths, covering the
edges of 𝐺. Algorithm 3 computes in 𝑂(𝑛) a
visibility representation of 𝐺 with integer
coordinates and 𝑂(𝑛2) area such that the edge
of every path 𝜋 ∈ Π is vertically aligned.

From a constrained visibility representation we
can construct:
• Constrained polyline drawing in 𝑂(𝑛) time.

1. Vertex segment → point
IF 𝑣 ∈ Π:𝑥(𝑢) = 𝑋(𝜋); 𝑦(𝑣) = 𝑌(Π)
otherwise free to chose

1 2 3 4 5 6 7

1

2

3

4

5

1 2 3 4 5 6 7

1

2

3

4

5

 Graph Drawing
Björn Gernert Vorlesungsaufzeichnungen 14/46
 Wintersemester 2011/12

2. Edge segment → edge
IF 𝑦(𝑣) − 𝑦(𝑢) = 1:
segment with ends in 𝑃(𝑢),𝑃(𝑣)
else:
polygonal line from 𝑃(𝑢) to 𝑃(𝑣)
through the points
�𝑥�τ(𝑢, 𝑣)�,𝑦(𝑢) + 1�;

�𝑥�𝜏(𝑢, 𝑣)�,𝑦(𝑣) − 1�

• Planar orthogonal drawing in 𝑂(𝑛) time

assume max degree ≤ 4
1. Vertices:

s/t draw at intersection of vertex
segment with median edges.
All other vertices:
Drawn at intersection 𝑃(𝑣) of vertex
segment with the edge segments of
path 𝜋𝑣

2. Edges:
𝑒 = (𝑢, 𝑣)(𝑢, 𝑣 ∉ {𝑠 𝑡⁄ }), drawn as
orthogonal chain trough points 𝑃(𝑢);
intersection of 𝜏(𝑢) and 𝜏(𝑒);
intersection of 𝜏(𝑒)and 𝜏(𝑣); and
𝑃(𝑣).
⇒ 3 segments (first and last may be
empty)

Edges incident to 𝑠, 𝑡:

1 2 3 4 5 6 7

1

2

3

4

5

bad edge

 Graph Drawing
Björn Gernert Vorlesungsaufzeichnungen 15/46
 Wintersemester 2011/12

2.3 Dominance drawings
DEFINITION
A dominance drawing 𝜏 of a digraph 𝐺, is
drawing such that, for any two vertices 𝑢, 𝑣
there is a directed path from 𝑢 → 𝑣 in 𝐺 iff
𝑥(𝑢) ≤ 𝑥(𝑣) and 𝑦(𝑢) ≤ 𝑦(𝑣) in 𝜏. “𝑣 is
dominating 𝑢”

DEFINITION
A digraph without transitive edges is called
“reduced”.

LEMMA
Any strait-line dominance drawing Γ of a
reduced planar st-graph 𝐺 is planar.

ALGORITHM 4 – DOMINANCE STRAIGHT-LINE
See handout.

3 PHASES
• Preprocessing → set up datastructure

𝑣1

𝑣2

Transitive edge 𝑒 𝑣

𝑒

𝑢

 Graph Drawing
Björn Gernert Vorlesungsaufzeichnungen 16/46
 Wintersemester 2011/12

• Preliminary layout → Assign to all vertices
distinct (𝑥,𝑦) coordinates.
Essentially: 2 topological sortings; scanning
for each vertex the successers; clockwise
and counterclockwise

• Compaction → Reduce area of final drawing

EXAMPLE

Preliminary layout:

𝑣

edge (𝑢, 𝑣)

head

𝑠

𝑡

1 2 3 4 5 6 7

1

2

3

4

5

8 9 10

6

7

8

9

10

𝑠

𝑡(9, 9)

 Graph Drawing
Björn Gernert Vorlesungsaufzeichnungen 17/46
 Wintersemester 2011/12

After compaction:

Minimal drawing:

THEOREM
Let 𝐺 be a reduced planar st-graph with 𝑛
vertices. Algorithm 4 dominance straight line
constructs in 𝑂(𝑛) time a planar straight-line
dominance grid drawing Γ of 𝐺 with 𝑂(𝑛2) area.
• Symmetries

Any components of 𝐺 that are isomorphic
(same direction of edges + boundaries of
the faces) or symmetric (axially or
rotationally isomorphic to themselves) have
straight-line drawings that are congruent
(up to a translation-reflection) or symmetric
(with respect to the line through
source/sink, or 180° rotation through its
centroid)

• Minimum area drawings

1 2 3 4 5

1

2

3

4

5

𝑡 (3, 3)

𝑠

1 2 3 4 5

1

2

3

4

5

𝑡 (3, 2)

𝑠

 Graph Drawing
Björn Gernert Vorlesungsaufzeichnungen 18/46
 Wintersemester 2011/12

Algorithm can be modified but symmetries
may be lost

• General planar st-graphs
Add dummy vertex on all transitive edges

3.1 Orthogonal drawings with maximum-degree 4
DEFINITION
An st-numbering for a graph 𝐺 with 𝑛 vertices is
a numbering for 𝑠 = 𝑣1,𝑣2, … , 𝑣𝑛 = 𝑡 of the
vertices of 𝐺 such that every vertex 𝑣𝑗 ∉ {𝑠, 𝑡} is
adjacent to at least two vertices 𝑣𝑖, 𝑣𝑘 with
𝑜 < 𝑗 < 𝑘.
We orient every edge of 𝐺 from the low number
vertex to the high numbered one.

BASIC ALGORITHM IDEA
• Compute st-numbering
• Place first vertex on grid. Allocate columns

for all incident edges
• Place other vertices on grid according to st-

numbering:
o Vertex 𝑣 gets a new row
o All incoming edges of 𝑣 are drawn on

the already allocated columns
o All outgoing edges of 𝑣 are “drawn”

by allocating one new column per
edge

⇒
• 𝑂(𝑛) time
• 𝑂(𝑛2) area
• At most 2𝑛 + 4 bends (at most 2 per edge)

Pair vertices for space reduction:

1. Row pairs:
a. Both vertices share the same row
b. Vertices of such a pair are placed in

different rows, but their placement
results in reusing one row

+

𝑢

𝑣
add

 Graph Drawing
Björn Gernert Vorlesungsaufzeichnungen 19/46
 Wintersemester 2011/12

2. Column pairs
a. The two vertices are placed such that

at least two different edges use the
same column

DEFINITION
A vertex with 𝑎 incoming and 𝑏 outgoing edges
is a 𝑎-𝑏 vertex (0 ≤ 𝑎 + 𝑏 ≤ 4)

CONDENSE 𝐺
Scan 𝐺 for 1-1 vertices whose outgoing edge
enters a 1-2 vertex or a 1-3 vertex. Absorb these
1-1 vertices into a single edge until no 1-2 or 1-3
vertex has a 1-1 vertex as immediate
predecessor.

Condensed graph 𝐺′|𝑉(𝐺′)| = 𝑛′. Need to
modify the st-numbering to remove gaps.

DEFINITION
• An assigned vertex belongs to a pair; an

unassigned vertex does not
• The next unassigned vertex considered is

always a 1-2, 1-3, 2-2 vertex and it is
paired with some lower numbered vertex in
𝐺′

• The vertex of a pair with the lower st-
numbering is called the first vertex, the
other is the second vertex

• A predecessor of a vertex in 𝐺 or 𝐺′ with
respect to the st-numbering is the

 Graph Drawing
Björn Gernert Vorlesungsaufzeichnungen 20/46
 Wintersemester 2011/12

immediate predecessor of the vertex
• Let �𝑣𝑖 , 𝑣𝑗� (𝑗 < 𝑜) be a pair formed by

Algorithm 5. If they are not predecessor-
successor they are called independent

Case analysis for drawing pairs

1) 𝑣𝑖 is a 2-2 vertex
a. 𝑣𝑗 is a 2-2 vertex and predecessor

of 𝑣𝑖

b. 𝑣𝑗 is a 2-2 vertex independent of
𝑣𝑖

c. 𝑣𝑗 is a 2-1 or 3-1 vertex and
predecessor of 𝑣𝑖

d. 𝑣𝑗 is a 1-1 vertex and
predecessor of 𝑣𝑖

e. 𝑣𝑗 is a 1-2 or 1-3 vertex and
predecessor of 𝑣𝑖

𝑉𝑖

𝑉𝑗

𝑉𝑖

𝑉𝑗

𝑉𝑖

𝑉𝑗

𝑣𝑖

𝑣𝑗

𝑣𝑖 𝑣𝑗

 Graph Drawing
Björn Gernert Vorlesungsaufzeichnungen 21/46
 Wintersemester 2011/12

f. 𝑣𝑗 is a 1-2 or 1-3 vertex and
independent of 𝑣𝑖

2) 𝑣𝑖 is a 1-2 or 1-3 vertex
→ it is always paired with 𝑣𝑖−1

a. 𝑣𝑖−1 is a 2-2, 2-1 or 3-1 vertex

b. 𝑣𝑖−1 is a 1-2, 1-3 vertex
independent from 𝑣𝑖

c. 𝑣𝑖−1 is a 1-2 or 1-3vertex
predecessor of 𝑣𝑖
→ We have a row pair if both of
the following conditions hold:
 - The edge (𝑣𝑖−1,𝑣𝑖) has
not absorbed any 1-1 vertices of
𝐺
 - Either 𝑣𝑖 is connected
later to another vertex 𝑣𝑗 which
is 1-1, 1-2, 1-3 OR 𝑣𝑖 is
connected later to a 2-2 vertex,
which is the second vertex of a
pair of type 1.d) OR 1.e)

𝑣𝑖 𝑣𝑗

𝑣𝑘 𝑘 < 𝑗
𝑣𝑘 other predecessor of

𝑣𝑖

𝑣𝑗

Reuse column as in cases 1a – 1c

𝑣𝑖 𝑣𝑖−1

 Graph Drawing
Björn Gernert Vorlesungsaufzeichnungen 22/46
 Wintersemester 2011/12

e. 𝑣𝑖−1 id a 1-2 or 1-3 vertex and at
least one of the conditions of
2.c) does not hold

ALGORITHM 6 – STEP 6
Place absorbed vertices on bends or grid points
where are no crossings. If not possible:
introduce new rows.

LEMMA
• Suppose there is a total of 𝑝1column pairs,

𝑝2 unassigned degree 2 vertices, 𝑝3
unassigned degree 3 vertices in 𝐺:
Let 𝑘1 = 𝑝1 + 𝑝2 + 𝑝3

2
 then Algorithm 6

produces a drawing of width at most
𝑛 + 1 − 𝑘1

• Suppose that 𝑘2 is the number of row pairs
in 𝐺 then Algorithmen 6 produces a drawing
of height at most 𝑛 + 1 − 𝑘2 if 𝑘2 ≥ 1 OR 𝑛
if 𝑘2 = 0

THEOREM
Let 𝐺 be a biconnected graph 𝐺 with 𝑛 vertices
and maximum degree 4. Algorithm 6 Four-
Orthogonal constructs an orthogonal grid
drawing Γ of 𝐺 in linear time 𝑂(𝑛) such that:
• Γ has area at most 0.77𝑛2 + 𝑂(𝑛)
• Γ has a total number of 2𝑛 + 4 bends
• No edge of Γ has more than 2 bends

RUNNING TIME
• Insert rows on top of existing drawing →

easy
• Insert columns anywhere → problem

Solution: Order maintenance problem

𝑣𝑖 𝑣𝑖−1

𝑣𝑗

𝑣𝑖

𝑣𝑖−1

𝑣𝑖+1

 Graph Drawing
Björn Gernert Vorlesungsaufzeichnungen 23/46
 Wintersemester 2011/12

Insert(𝑥,𝑦): Insert 𝑦 directly after 𝑥
Delete(𝑥):
Order(𝑥,𝑦): True if 𝑥 is before 𝑦 in the list.
 False if not

All operations: 𝑂(1) time

3.2 Orthogonal drawings with maximum-degree > 4

Better: Each vertex is drawn as rectangular box
with 4 sides lying on the grid. Each side (except
bottom) has a number of connections with
integer coordinates where incident edges are
attached.

ALGORITHM
• Insert vertices in st-ordering
• Decide size/exact placement of vertex when

inserting

SIZE
• All outgoing edges connect to the top of the

box
• Incoming edges are split between the left

side �indeg(𝑣)
2

� and the right side �indeg(𝑣)
2

� of
the box

𝑣1 𝑣1_1 𝑣1_2

𝑣
vertex

top

left right

bottom

corner
connectors

side
connectors
(edge)

 Graph Drawing
Björn Gernert Vorlesungsaufzeichnungen 24/46
 Wintersemester 2011/12

POSITION
Columns:
• Order all columns of the current drawing

from left to right (including all columns with
incoming edges) compute the columns 𝐶1,
𝐶2 containing the median incoming edges of
𝑣.

• Insert needed amount of columns for 𝑣
between 𝐶1 and 𝐶2 (one median 𝐶: right 𝑐)

Rows:
• Insert needed amount on top of the existing

drawing.
FINAL
• Put box in the newly created space
• Connect all incoming edges from column 𝐶1

and left to the left side; all incoming edges
from column 𝐶2 and right to the right side
of the box

Given a graph with 𝑚 edges and st-ordering
⇒ width ≤ 𝑚 + 𝑛𝑜𝑢𝑡1
 number of vertices
 with outdegree = 1
 height ≤ 𝑚

2
+ 𝑛𝑜𝑑𝑑

2
+ 𝑛𝑖𝑛1 + 𝑛𝑖𝑛2

 number of vertices
 with odd degree

IMPROVE
Rows/columns may be shared. Vertices of
degree 2 and some of degree 3, 4 can be
represented as points.

THEOREM
Let 𝐺 be a graph with 𝑚 edges and an st-

𝑣2

𝑣4

𝑣3

𝑣1

 Graph Drawing
Björn Gernert Vorlesungsaufzeichnungen 25/46
 Wintersemester 2011/12

numbering. There exists an Algorithm that
produces an orthogonal gridding Γ of 𝐺, by
representing the height degree vertices as
boxes. Γ can be computed in 𝑂(𝑚) time and it
has the properties:
• The perimeter of each vertex is proportional

to its degree
• Width of Γ is at most 𝑚− 1
• Height of Γ is at most 𝑚

2
− 2

• Each edge has at most one bend
• Total number of bends is at most 𝑚 − 𝑛𝑜𝑢𝑡1

 number of vertices
 with out-degree = 1

4.1 Layered drawings of digraphs
Given: Digraph 𝐺
Wanted: Layered polyline drawing Γ of 𝐺
Steps:

0. Cycle Removal (Preprocessing)
Temporarily reverse edge
directions to make 𝐺 acyclic

1. Layer assignment
Assign vertices to horizontal
layers (y- coordinates)

2. Crossing Reduction
Order vertices within layers to
reduce crossings

3. Assign x-coordinates

4. If necessary put cycles back in

4.1.1 Layer assignment
DEFINITION
Suppose that 𝐺 = (𝑉,𝐸) is a cyclic digraph:
• A layering of 𝐺 is a partition of 𝑉 into

subsets 𝐿1,𝐿2, … , 𝐿𝑛 such that:
If (𝑢, 𝑣) ∈ 𝐸 where 𝑢 ∈ 𝐿𝑖, 𝑣 ∈ 𝐿𝑗, then
𝑜 > 𝑗

• The height of such a layering is the number
of layers ℎ

• 𝐺 is then called a (h-)layered digraph
• The width of a layered digraph is the

 Graph Drawing
Björn Gernert Vorlesungsaufzeichnungen 26/46
 Wintersemester 2011/12

number of vertices in the largest layer
max
1≤𝑖≤ℎ

|𝐿𝑖|
• The span of an edge (𝑢, 𝑣)with 𝑢 ∈ 𝐿𝑖,

𝑣 ∈ 𝐿𝑗 is 𝑜 − 𝑗
• In a proper digraph, all edges have span = 1

REQUIREMENTS OF LAYERING
• Compactness (small width/height)
• Proper (if not insert dummy vertices on

“long” edges)
• Small number of dummy vertices

̶ Running times depend on all vertices
̶ Bends occur only at dummy vertices

MINIMUM HEIGHT LAYERING
ALGORITHM 7 - LONGEST PATH LAYERING
Input: Reduced, acyclic graph 𝐺
Output: Layering of 𝐺 with minimum height

1. Place all sinks in 𝐿1
2. Each remaining vertex 𝑣 is placed in layer

𝐿𝑝+1 where the longest path from 𝑣 → sink
has length 𝑝

Properties of the drawing produces b
 Algorithm 7:

 J Linear time
 J Minimum number of layers
 L Drawings may be too wide

MINIMUM WIDTH LAYERING
Finding a layering with minimum height and
minimum width → NP complete

⇒ Heuristic that gives a layering with width at

dummy

𝐿4

𝐿3

𝐿2

𝐿1

 Graph Drawing
Björn Gernert Vorlesungsaufzeichnungen 27/46
 Wintersemester 2011/12

most 𝑤 and height at most ℎ ≤ �2 − 2
𝑤
�ℎmin .

ℎmin minimum height of layering of width 𝑤.

NOTE
Width of layering does not take dummy vertices
into account!

ALGORITHM 8 – COFFMAN-GRAHAM LAYERING
Input: Reduced digraph 𝐺 = (𝑉,𝐸) and
 𝑤 ∈ ℕ
Output: Layering of 𝐺 with width 𝑤

1. Initially, all vertices are unlabeled
2. For 𝑜 = 1 to |𝑣| do

a. Choose unlabeled vertex 𝑣 such that
{𝜋(𝑢)|𝑢, 𝑣 ∈ 𝐸} is minimized

b. 𝜋(𝑣) = 𝑜

3. 𝑘 = 1, 𝐿1 = ∅, 𝑈 = ∅
4. While 𝑈 ≠ 𝑉 do

a. Choose 𝑢 ∈ 𝑉 − 𝑈 such that every
vertex in {𝑣|(𝑢, 𝑣) ∈ 𝐸} is in 𝑈 and
𝜋(𝑢) is maximized

b. If |𝐿𝑘| < 𝑤 and for every edge (𝑢, 𝑣),
𝑥 ∈ 𝐿1 ∪ …∪ 𝐿𝑘−1 then add 𝑢 to 𝐿𝑘
else 𝑘 = 𝑘 + 1, 𝕃𝑘 = {𝑢}

c. Add 𝑢 to 𝑈

DETAILS TO ALGORITHM 8 – STEP 2
Algorithm 8 uses lexicographic order defined on
finite sets of integer > 0. The largest item of the
set is the most significant!

{1,4,7} < {3,𝟖}
{1,5,𝟖, 9} > {3,4,9}

EXAMPLE

1 2

3 4 5 6

7 8 9 10

12 11

13 𝑈

 Graph Drawing
Björn Gernert Vorlesungsaufzeichnungen 28/46
 Wintersemester 2011/12

Minimize number of dummy vertices
Suppose each vertex 𝑢 has a y-coordinate 𝑦(𝑢)
with the properties:

1. 𝑦(𝑢) is an integer ∀𝑢
2. 𝑦(𝑢) ≥ 1 ∀𝑢
3. 𝑦(𝑢) − 𝑦(𝑣) ≥ 1 for each edge (𝑢, 𝑣)

The function 𝑦 defines a layering with
𝐿𝑚 = {𝑢 ∈ 𝑉|𝑦(𝑢) = 𝑚}. Let
𝑓 = ∑ (𝑦(𝑢) − 𝑦(𝑣) − 1)(𝑢,𝑣)∈𝐸 be the sum of
the vertical spans of the edges in this layering
minus the number of edges.

The layer assignment problem is reduced to
choosing y-coordinates to minimize 𝑓 subject to
conditions 1-3 integer linear problem
⇒ Polynomially solvable

4.1.2 Crossing reduction
OBSERVATION
The number of edge crossings in a layered
digraph does depend only on the ordering of the
vertices.

⇒ Combinatorial problem!

Minimize edge crossings in a layered digraph
⇒ NP complete

𝐿7

𝐿6
𝐿5
𝐿4
𝐿3
𝐿2
𝐿1 dummy vertices

𝑤 = 3

1

2 3
4 5

6 7 8
10
12
13

9

11

𝐿2

𝐿1

𝑎 𝑏 𝑐 𝑎 𝑏 𝑐

⟺

 Graph Drawing
Björn Gernert Vorlesungsaufzeichnungen 29/46
 Wintersemester 2011/12

LAYER-BY-LAYER SWEEP
DEFINITION
A two layered digraph is a bipartite digraph
𝐺 = {𝐿1,𝐿2,𝐸) consisting of disjoint vertex sets
𝐿1,𝐿2 and a set 𝐸 ⊆ 𝐿1,𝐿2 of edges.

We specify vertex orderings by giving unique x-
coordinates 𝑥𝑖(𝑢) to each vertex 𝑢 ∈ 𝐿1; 𝑜 = 1,2

DEFINITION
• The number of crossings in a digraph of 𝐺

specified by 𝑥1,𝑥2 is cross(𝐺, 𝑥1, 𝑥2)
• The minimum number of crossings, when

the vertices of 𝐿1 are ordered by 𝑥1 is
opt(𝐺, 𝑥1)

It holds: 𝑜𝑝𝑡(𝐺, 𝑥1) = min𝑥2 cross(𝐺, 𝑥1,𝑥2)

DEFINITION
We define the two-layer crossing problem as
follows. Given a two layered graph
𝐺 = (𝐿1,𝐿2,𝐸) and an ordering 𝑥1 on 𝐿1 find an
ordering 𝑥2 on 𝐿2 such that cross(𝐺, 𝑥1,𝑥2) =
opt(𝐺, 𝑥1)
 ⇒ NP-Complete

DEFINITION
Let 𝑢, 𝑣 be distinct vertices in 𝐿2. The crossing
number 𝐶𝑢𝑣 (for 𝑢 ≠ 𝑣 ∈ 𝐿2) is the number of
pairs (𝑢,𝑤), (𝑣, 𝑧) of edges with 𝑥1(𝑤) > 𝑥2(𝑧)
& 𝑥2(𝑢) < 𝑥2(𝑣) & 𝐶𝑢𝑣 = 0.

EXAMPLE

𝐿2

𝐿1

 Graph Drawing
Björn Gernert Vorlesungsaufzeichnungen 30/46
 Wintersemester 2011/12

 𝑝 𝑞 𝑢 𝑡

𝑝 0 2 1 1

𝑞 5 0 6 3

𝑢 6 9 0 6

𝑡 2 3 2 0

LEMMA
If 𝐺 = (𝐿1,𝐿2,𝐸) is a 2-layer digraph and 𝑥1,𝑥2
are orderings of 𝐿1 and 𝐿2 then

cross(𝐺, 𝑥1,𝑥2) = � 𝐶𝑢𝑣
𝑥2(𝑢)<𝑥2(𝑣)

Further:

opt(𝐺, 𝑥1) ≥� min(𝐶𝑢𝑣,𝐶𝑣𝑢)
𝑢,𝑣

Where the sum is over all unordered pairs {𝑢, 𝑣 }
of vertices in 𝐿2.

Sorting methods
• Adjacent exchange

o Scan the vertices of 𝐿2 from left to
right, exchanging all adjacent vertices
𝑢, 𝑣 if 𝐶𝑢𝑣 > 𝐶𝑣𝑢; until the number of
crossings does not reduce (“Bubble
Sort”)

𝐿2

𝐿1

𝑝 𝑞 𝑢 𝑡

1 2 3 4 5 6 7

𝐿2

𝐿1

𝑡 𝑢 𝑞 𝑝

1 2 3 4 5 6 7

order of vertices
is 𝑝, 𝑞,𝑢, 𝑡

order of vertices
is 𝑡,𝑢, 𝑞,𝑝

 Graph Drawing
Björn Gernert Vorlesungsaufzeichnungen 31/46
 Wintersemester 2011/12

• Split
o Choose pivot vertex 𝑝 ∈ 𝐿2
o For each vertex 𝑢 ∈ 𝐿2 𝑢 ≠ 𝑝 do:

 If 𝐶𝑢𝑝 < 𝐶𝑝𝑢
 Then place 𝑢 ∈ 𝑉left
 Else place 𝑢 ∈ 𝑉right

o Recurs on 𝑉left/right concatenate
(“Quicksort”)

Problem with sorting methods: Both need pre
compute of crossings array!

AVERAGING METHOD
• Barycenter Method

𝑥2 is the barycenter for all 𝑢 ∈ 𝐿2.

avg(𝑢) =
1

deg(𝑢) � 𝑥1(𝑣)
𝑣∈𝑁𝑢

 neighbors of 𝑢

If two vertices have the same barycenter,
we separate them arbitrarily by a small
amount. The number of crossings achieved
is avg(𝐺, 𝑥1)

• Median method
If the neighbors of 𝑢 ∈ 𝐿2 are 𝑣1,𝑣2, … , 𝑣𝑗
with 𝑥1(𝑣1) < 𝑥1(𝑣2) < ⋯ < 𝑥1�𝑥𝑗� then
we define med(𝑢) = 𝑥1�𝑣⌊𝑗 2⁄ ⌋�.
If 𝑢 has no neighbors, med(𝑢) = 0.
We order the vertices of 𝐿2 by sorting them
on med(𝑢).
If med(𝑢) = med(𝑣), and say deg(𝑣) is
odd and deg(𝑢) is even, then 𝑥2(𝑣) <
𝑥2(𝑢).
If both degrees are odd or even, we place 𝑢
and 𝑣 arbitrarily.
The number of crossings achieved is
med(𝐺, 𝑥1)

THEOREM
Suppose that 𝐺 = (𝐿1,𝐿2,𝐸) is a two-layer
digraph and 𝑥1 is an ordering of 𝐿1, if
opt(𝐺, 𝑥1) = 0 then avg(𝐺, 𝑥1) = med(𝐺, 𝑥1) =
0. Neither method gives an optimal solution in
all cases!

 Graph Drawing
Björn Gernert Vorlesungsaufzeichnungen 32/46
 Wintersemester 2011/12

WORST CASE BARYCENTER

WORST CASE MEDIAN

APPLICATION-HYBRID APPROACH
1. Initial ordering with median method
2. Tiebreak with barycenter method
3. Define the output with adjacent exchange

4.1.3 Horizontal coordinate assignment
Consider the directed path
𝑝 = (𝑣1,𝑣2, … , 𝑣𝑘−1,𝑣𝑘) where 𝑣2, … , 𝑣𝑘−1 are
dummy vertices. If this path was drawn straight,
then the x-coordinates of the dummy vertices 𝑣
would satisfy:

𝑥(𝑣𝑖) − 𝑥(𝑣1) −
𝑜 − 1
𝑘 − 1 �

𝑥(𝑣𝑘)− 𝑥(𝑣1)�
For each of these path 𝑝 corresponding to an
edge with span > 1, we define

𝑜(𝑝) = ��𝑥(𝑣𝑖) −
𝑜 − 1
𝑘 − 1 �𝑥

(𝑣𝑘) − 𝑥(𝑣1)� + 𝑥(𝑣1)�
2𝑘−1

𝑖=2

To make the edges as trait as possible, we
minimize the global sum ∑𝑜(𝑝) over all paths of
dummy vertices subject to the constraints
𝑥(𝑤)− 𝑥(𝑧) ≥ 𝛿 for all pairs 𝑤, 𝑧 of vertices in
the same layer (𝑤 right of 𝑧).

Constraints ensure:

- Ordering is maintained
- Minimal horizontal distance of 𝛿 between

vertices

Add further constraints:

- X-coordinates lie within width boundary

𝐿2

𝐿1

𝑢 𝑣

𝑘2 − 1 𝑘 − 1

𝐿2

𝐿1

𝑢 𝑣

𝑘 𝑘 + 1

𝑘 + 1 𝑘

 Graph Drawing
Björn Gernert Vorlesungsaufzeichnungen 33/46
 Wintersemester 2011/12

5.1 Label placement
ASSUME
Drawing is fixed, may not be changed.

DEFINITION
A label is a textural description that conveys
information or clarifies the meaning of complex
structures presented in graphical form.
Let Γ be a drawing and 𝐹 the set of features to
be labeled. A solution to the labeling problem
for Γ assigns labels to each feature 𝑓 ∈ 𝐹 such
that the relevant information is communicated
“in the best possible way”. This can be achieved
by positioning the labels “in the most
appropriate place”. For each feature there is a
large number of potential label positions, the
labeling space.

LABEL QUALITY EVALUATION
Basic rules:

1. No overlap of a label with other labels or
features

2. Each label can be easily identified with
exactly one feature in the drawing

3. Each label must be placed in the best
possible position (among all acceptable
ones)

DEFINITION
Given a set 𝐹 of graphical features to be labeled,
we define:
Λ is the set of all label positions
Λ𝑓 the set of all label positions for feature

𝑓 ∈ 𝐹

2 1

3 4

 Graph Drawing
Björn Gernert Vorlesungsaufzeichnungen 34/46
 Wintersemester 2011/12

𝜆 𝐹 → Λ a function assigning a label position
to a feature in example Λ(𝑓) = 𝜆𝑓 ∈ Λ𝑓

OPTIMIZATION PROBLEM
Each label position is associated with a cost
function: Λ → ℕ. Cost is determined with
respect to the quality of a label position. We
want to find a label assignment to all features
that minimizes the total cost.

THE LABELING PROBLEM
Given: Set of features 𝐹
Find: Label assignment minimizing
 ∑ ∑ cost�𝜆(𝑜)� ∗ 𝑃(𝑜, 𝑗)𝑗∈Λ𝑖∈𝐹 where

 𝑃(𝑜, 𝑗) = �1 𝜆(𝑜) = 𝑗
0 otherwise

 And ∑ ∑ 𝑃(𝑜, 𝑗) = |𝐹|𝑗∈Λ𝑖∈𝐹 where
 ∑ 𝑃(𝑜, 𝑗) = 1 𝑜 ∈ 𝐹𝑗∈Λ𝑖

5.2 Graphical feature label placement

Most general method!

ALGORITHM 9 – BASIC LABELING
Input: A drawing Γ and a set of objects 𝐹 to
 be labeled.
Output: A label assignment free of overlaps

1. Select label positions for each object
2. Remove heavily overlapping labels; Group

overlapping labels together
3. Final label assignment: Solve a matching

problem

HEURISTICS TO SELECT LABEL POSITIONS
Points: Label positions touching the
 corresponding point.

Edges: Define a number of equally spaced
 points on the edge. Each label position
 is associated with exactly one of those

4: 8:

 Graph Drawing
Björn Gernert Vorlesungsaufzeichnungen 35/46
 Wintersemester 2011/12

 points and touches it in a corner:

REDUCING THE NUMBER OF LABELS
Create an intersecting graph: Each label position
is a node, if 2 positions intersect, we add an
edge. Finding intersections between 𝑛 labeling
rectangles: 𝑂(𝑛 log𝑛 + 𝑘)

Goal: Reduce the intersection graph to a set
 of disconnected subgraphs.

Preprocessing: Remove all label positions that
 add to the complexity of the
 problem without (potentially)
 improving the solution.

EXAMPLE

MAIN STEP
If a subgraph 𝐶 must be split, we remove the
node with highest degree.
Unless it corresponds to a label position of some
object with very few label positions. → Choose
second highest degree.
Repeat until 𝐶 is split in two disjoint subgraphs
or 𝐶 is a complete graph.

MATCHING LABELS TO OBJECTS
DEFINITION
Given a drawing Γ, a set 𝐹 of graphical features
to be labeled, and a set Λ of label positions for

1

2
3

4

5 6 7

12
11

10
9

8

2 1

3 4

⇒ Remove 3 & 4.
Keep 1 for later
possible use

 Graph Drawing
Björn Gernert Vorlesungsaufzeichnungen 36/46
 Wintersemester 2011/12

𝐹. Then we define the matching graph
𝐺𝑚�𝑉𝑓 ,𝑉𝐶 ,𝐸𝑚�:
• Each node 𝑓 ∈ 𝑉𝑓 corresponds to a feature
𝑓 ∈ 𝐹

• Each node 𝑐 ∈ 𝑉𝐶 corresponds to a group of
overlapping labels

• Each edge (𝑓, 𝑐) ∈ 𝐸𝑚 connects a node
𝑓 ∈ 𝑉𝑓 to a node 𝑐 ∈ 𝑉𝑐 iff 𝑓 ∈ 𝐹 has a label
position that is a member of group 𝐶

• 𝐺𝑚 is bipartite!
• The cost of assigning label 𝑙 to feature 𝑓 is

the weight of edge (𝑓, 𝑙) ∈ 𝐸𝑚
• The size of 𝐺𝑚 depends

o On the size of the input drawing �𝑉𝑓�
o On the size of the set of labels (𝑉𝐶)
o On the density of the overlaps (𝐸𝑚)

A final label assignment can be found by
computing the maximum cardinality minimum
weight matching on 𝐺𝑚. This can be done in
𝑂(𝑛2.376) randomized time. Or in 𝑂�√𝑛 ∗ 𝑚�
deterministic time.
 #nodes #edges

EXAMPLE

2 1

3 4

2 1

3 4

2 1

3 4

2 1

3 4

𝐴 𝐵 𝐶 𝐷

 Graph Drawing
Björn Gernert Vorlesungsaufzeichnungen 37/46
 Wintersemester 2011/12

Create the intersection graph:

Simplify! Remove all nodes with degree ≥ 3
⇒ 𝐴4 & 𝐷2
Create the matching graph:

Find maximum cardinality minimum weight
matching on 𝐺𝑛

SOLUTION

𝐴1

𝐴2

𝐴3

𝐴4

𝐷4 𝐷3 𝐷2 𝐷1
𝐶4

𝐶3

𝐶2

𝐶1
𝐵1 𝐵2 𝐵3 𝐵4

𝐴 𝐵 𝐶 𝐷

𝐴2 𝐴1
𝐶2
𝐶3

𝐴3
𝐵2

𝐵3 𝐵1
𝐵4
𝐷3

𝐶1 𝐶4
𝐷1

𝐷4

1

1

1

1

𝐴 𝐵 𝐶 𝐷

 Graph Drawing
Björn Gernert Vorlesungsaufzeichnungen 38/46
 Wintersemester 2011/12

5.3 Edge label placement (ELP)
ASSUMPTION

1. All labels have the same height
2. Each edge has only one label assigned to it

WANTED
Assign to each edge a label position free of
overlaps, that touches only “its” edge. Finding
the initial set of label positions.
• Divide the input drawing into consecutive

horizontal strips of equal height =� height of
labels

• Each label must lie fully inside one
horizontal strip. → “Slide” the label inside
the strip until it touches the correct edge.

• A label is only included in Λ𝑒 if it does not
overlap any other graphical features.
Overlapping other label positions is
allowed.

EXAMPLE

OBSERVATIONS
• A label position of edge 𝑒 does not overlap

any other label position of 𝑒
• If to label positions overlap, they must lie

inside the same horizontal strip
• Each label position overlaps at most one

label position

ALGORITHM 10 – EDGE LABELING
Input: A drawing Γ of graph 𝐺 = (𝑉,𝐸)

Output: A label assignment to the edge
 without overlap

1. Split Γ into horizontal strips of label heights

 Graph Drawing
Björn Gernert Vorlesungsaufzeichnungen 39/46
 Wintersemester 2011/12

2. Find all label positions for each edge and
construct the groups of overlapping labels

3. Construct the matching graph 𝐺𝑚 of Γ
4. Match label positions to edges:

- Find maximal cardinality
- Minimum weight matching of 𝐺𝑚

In 𝐺𝑚 each 𝑣𝑐 has degree at most 2.
→ Matching heuristic in linear time

ALGORITHM 11 – FAST MATCHING
Input: Matching Graph 𝐺𝑚

Output: A maximum cardinality matching for
 𝐺𝑚 with low total weight.

1. If the minimum weight incident edge of
𝑓 ∈ 𝑉𝑓 connects to 𝑐 ∈ 𝑉𝑐 with degree = 1,
then:

a. Assign this edge as matched edge
b. Update 𝐺𝑚:

• Remove 𝑓, 𝑐 and all incident
edges

• Store 𝑓, 𝑐, (𝑓, 𝑐) as part of the
matching

2. If a node 𝑓 ∈ 𝑉𝑓 has degree = 1 then:
a. Assign its incident edge as matched

edge
b. Update 𝐺𝑚

3. Repeat 1. & 2. Until no more edge can
be matched

4. Delete all nodes with degree = 0 from
𝐺𝑚

5. For each node 𝑓 ∈ 𝑉𝑓 do:
 Remove all edges except the two
 with lowest weight

6. 𝐺𝑚 consists of simple path and cycles
a. Find the 2 possible maximum

cardinality matchings for each
path/cycle

b. Choose the matching with minimum
weight

 Easy!
 Works well if the edges are long and

vertical → Many potential label
positions! Good for hierarchical and
strait line drawings

 Cannot deal with horizontal edges!

→ Bad for orthogonal drawings

 Graph Drawing
Björn Gernert Vorlesungsaufzeichnungen 40/46
 Wintersemester 2011/12

→ Solution: Add vertical strips
 Some edges may get no label or

outcome is not satisfactory.
→ Solution: Manual tweaking

5.4 Label Placement by drawing modification
If we do not have a graphic or technical map, we
can modify the drawing to help with label
placement.

1. Modify the existing layout to make room
from the labels. (Open problem!)

2. Produce a new drawing integrating the
layout and the labeling process. → For
orthogonal drawings

TO NO. 2
Given: Let 𝐺 be a planaer graph with

orthogonal representation 𝐻. Let 𝐿 be a
set of labels for the edges of 𝐺 (1 label
per edge) modeled as axis parallel
rectangle with given height and width.

Want: A orthogonal grid drawing of 𝐺 such that

the edges are labeled and have the
shape defined in 𝐻.

CONSTRAINTS AND GOALS FOR A “GOOD” DRAWING

1. A label is drawn with one of its sides as a
proper subset of its edge.

2. A label of segment 𝑠 cannot overlap any
other label, vertex or segment

3. A good label placement minimizes the area
of the drawing. This problem can be
formulated as integer linear program and
solved by heuristics (Branch & Cut)

 Graph Drawing
Björn Gernert Vorlesungsaufzeichnungen 41/46
 Wintersemester 2011/12

6.1 Rectangular cartograms1
DEFINITION
A cartogram is a map where the size of a region
is not the true size, but corresponds to a
particular geographic variable (e.g. population).
The geometry is usually distorted to convey the
information of the alternate variable. “Value-by-
area” map.

cartogram ↔ Kartenanamorphote
thematic map ↔ Kartogramm

GENERALS TYPES OF CARTOGRAMS
• Contiguous area cartograms

Have deformed regions so that the desired
size can be obtained and the adjacencies
kept. (standard model)

• Non-contiguous area cartograms
The region have their true shape, but are
sealed down and generally do not touch
anymore

• Cartograms based on circles
• Rectangular cartograms

Each region is represented by a single
rectangle

• Hybrid cartograms
Hybrid of the first and forth type: Regions
are rectilinear polygons with small number
of vertices

RECTANGULAR CARTOGRAMS (1934)
 Areas can be computed easily

 Rectangular shape is less recognizable and

imposes limitations to the possible layout

QUALITY CRITERIA
• Cartographic error for each region

|𝐴𝐶 − 𝐴𝑠|
𝐴𝑠

𝐴𝑐 =area of the region in the cartogram
𝐴𝑠 =area specified by the variable to be
shown

• Average and maximum cartographic error
• Correct adjacencies of the rectangles
• Maximum aspect ratio
• Suitable relative positions

1 On Rectangular Cartograms, M. van Kreveld & B. Speckmann, www.cs.uu.nl/research/techreps/repo/CS-
2004/2004-040.pdf

http://www.cs.uu.nl/research/techreps/repo/CS-2004/2004-040.pdf
http://www.cs.uu.nl/research/techreps/repo/CS-2004/2004-040.pdf

 Graph Drawing
Björn Gernert Vorlesungsaufzeichnungen 42/46
 Wintersemester 2011/12

DEFINITION
• A rectangular partition of a rectangle 𝑅 is a

partition of 𝑅 into a set 𝑆 of non-
overlapping rectangles such that no 4
rectangles in 𝑆 meet in the same point.

• A rectangular dual of a plane graph 𝐺 is a
rectangular partition 𝑅 such that:

1. There is a one-to-one
correspondence between the
rectangles in 𝑅 and the node in 𝐺

2. Two rectangles in 𝑅 share a common
boundary iff corresponding nodes in
𝐺 are connected

• A triangle is a cycle of 𝐺 consisting of 3
areas

• A cycle 𝐶 of 𝐺 divides the plane into an
interior and an exterior region. If 𝐶 contains
at least one vertex in its interior and
exterior then 𝐶 is a separation cycle

THEOREM
A plane graph 𝐺 has a rectangular dual 𝑅 with 4
rectangles on the boundary of ℛ if and only if

1. Every interior face is a triangle and the
exterior face is a quadrangle

2. 𝐺 has no separating triangles

NOTE
• An error-free cartogram need not exist

even if a rectangular dual does
• A rectangular dual need not be unique
• Planar graphs can always be represented

with rectangles, L-shapes and T-shapes

6.2 Algorithm 12 – Rectangular dual2
DEFINITION
A face graph 𝐹 of a map has a vertex for each
region in the map and an edge between 2
vertices iff their regions share a common
boundary

1. Preprocessing

• Construct the face graph of the map
• Triangulate all non-triangular faces of 𝐸

 → Each triangulation leads to a different
rectangular dual!

2 Regular edge labeling of 4-connected plane graphs and its applications in graph drawing problems, G. Kant,
X. He, http://www.sciencedirect.com/science/article/pii/S030439759500257X

http://www.sciencedirect.com/science/article/pii/S030439759500257X

 Graph Drawing
Björn Gernert Vorlesungsaufzeichnungen 43/46
 Wintersemester 2011/12

• Process nodes of degree < 4
→ Integrate these nodes into adjacent
one

• Degree 3:

• Degree 2:

• Degree 1:

• Disconnected regions
→ Choose one region to represent all

2. Directed regular edge labels
The directed edge labels give an adjacency
direction between neighboring vertices of 𝐹.
That follow from the relative geographic
position of the respective regions.

integrate

BE

LUX

GER

FR

BE + LUX

FR

GER
BE

GER

FR

LUX

→ BE becomes L-shaped in final cartogram

integrate

CN

NP

IN

NP + IN

CN CN

IN

NP

→ IN becomes C-shaped in final cartogram

LS

ZA

ZA + LS
ZA

LS

→ ZA becomes O-shaped in final cartogram

 Graph Drawing
Björn Gernert Vorlesungsaufzeichnungen 44/46
 Wintersemester 2011/12

HEURISTIC
Consider the line through the centers of mass
of the regions and its compass direction

N

E

S

W

 Graph Drawing
Björn Gernert Vorlesungsaufzeichnungen 45/46
 Wintersemester 2011/12

We orient the directions from
south → north (𝑇1) from west → east (𝑇2)

OBSERVATION
A face graph 𝐹 with directed regular edge
labeling can be represented by a rectangular
dual iff:
1. Every internal region has at least 1

neighbor on each compass direction
2. When traversing the regions of any node
𝑣 in clockwise order, starting at the west
most northern neighbor, we encounter:
• All north neighbors
• All east neighbors
• All south neighbors
• All west neighbors

→ “Realizable” edge labeling

3. Rectangular layout
• We add 4 outer nodes to 𝐹: 𝑁,𝐸,𝑊, 𝑆

and edges: 𝑁-𝐸, 𝑁-𝑊, 𝑆-𝐸, 𝑆-𝑊
• If necessary add “sea” regions to preserve

shape and adjacencies
→ New graph 𝐺

• Construct x-coordinates
a) Let 𝐺1 be the graph consisting of all

vertices of 𝐺 and all edges of 𝑇1 plus
the 4 exterior edges with directions
𝑆 → 𝑊, 𝑊 → 𝑁, 𝑆 → 𝐸, 𝐸 → 𝑁
⇒ 𝐺1 is a planar st-graph with
source 𝑆 and sink 𝑁

b) Associated dual st-graph 𝐺1∗: Let the
source of 𝐺1∗ be the left face of 𝑊∗
and the sink the right face of 𝐸∗. For
each node 𝑓 ∈ 𝐺1∗ let 𝑑1(𝑓) be the
length of the longest path from 𝑊∗
to 𝑓; Let 𝐷1 ≔ 𝑑1(𝐸∗).
For each interior vertex 𝑣:

𝑥𝐿𝐸𝐹𝑇(𝑣) = 𝑑1�𝐿𝐸𝐹𝑇(𝑣)�
𝑥𝑅𝐼𝐺𝐻𝑇(𝑣) = 𝑑1�𝑅𝐼𝐺𝐻𝑇(𝑣)�

For the 4 exterior vertices:
𝑥𝐿𝐸𝐹𝑇(𝑊) = 0
𝑥𝑅𝐼𝐺𝐻𝑇(𝑊) = 1
𝑥𝐿𝐸𝐹𝑇(𝐸) = 𝐷1 − 1
𝑥𝑅𝐼𝐺𝐻𝑇(𝐸) = 𝐷1
𝑥𝐿𝐸𝐹𝑇(𝑆) = 1
𝑥𝑅𝐼𝐺𝐻𝑇(𝑆) = 𝐷1 − 1
𝑋𝐿𝐸𝐹𝑇(𝑁) = 1
𝑥𝑅𝐼𝐺𝐻𝑇(𝑁) = 𝐷1 − 1

 Graph Drawing
Björn Gernert Vorlesungsaufzeichnungen 46/46
 Wintersemester 2011/12

• Constructing the y-coordinates
Similar with 𝐺2. 𝐺2 consists of all vertices
of 𝐺, all edges of 𝑇2,plus the exterior
edges 𝐸 → 𝑆, 𝑆 → 𝐸, 𝑊 → 𝑁, 𝑁 → 𝐸
𝐺2: source = 𝑊, sink = 𝐸

THEOREM
Let 𝐺 be a graph with realizable directed edge
labeling we assign to each vertex 𝑣 ∈ 𝐺 the
rectangle 𝑓(𝑣) bounded by lines:

𝑋𝐿𝐸𝐹𝑇(𝑣), 𝑥𝑅𝐼𝐺𝐻𝑇(𝑣)
𝑦𝐿𝑂𝑊(𝑣), 𝑦𝐻𝐼𝐺𝐻(𝑣)

Then the set {𝑓(𝑣)|𝑣 ∈ 𝐺} forms a rectangular
dual of 𝐺. If a relizable directed edge labeling is
given, a rectangular dual takes 𝑂(𝑛) time.

6.3 Main cartogram algorithm
See handout!

	1.1 Layered Tree Algorithm
	1.2 Radial drawings
	1.3 Planarity testing
	2.1 Planar orientations
	2.2 Constrained visibility representations
	2.3 Dominance drawings
	3.1 Orthogonal drawings with maximum-degree 4
	3.2 Orthogonal drawings with maximum-degree > 4
	4.1 Layered drawings of digraphs
	4.1.1 Layer assignment
	4.1.2 Crossing reduction
	4.1.3 Horizontal coordinate assignment

	5.1 Label placement
	5.2 Graphical feature label placement
	5.3 Edge label placement (ELP)
	5.4 Label Placement by drawing modification
	6.1 Rectangular cartograms0F
	6.2 Algorithm 12 – Rectangular dual1F
	6.3 Main cartogram algorithm

