1.1 Layered Tree Algorithm

Theorem

Let T be a Binary Tree with n vertices.
Algorithem 1 constructs a drawing T^{\prime} of T in $O(n)$ time such that T^{\prime} is layered, in example the y-coordinate of each vertex is equal to minus depth of the vertex.

- T^{\prime} is planar, straightline and strictly drawn
- T^{\prime} is embedding the presaving in example the left-to-right order of each vertex is preserved
- Any two vertices of T^{\prime} have horizontal and vertical distance of at least 1
- The x-coordinates of a parent with 2 children is the average of the x-coordinate of its children
- The area of T^{\prime} is $O\left(n^{2}\right)$

Implementation of Algorithm 1

1. Postorder traveling of T to recursively compute for each vertex v the horizon displacement of its children with respect to v
2. Preorder traveling of T to compute x coordinates (accumulation of displacements on path to root) and y-coordinates (depth) of all vertices

Definition

The left contour of a Binary Tree T with height h is the sequenze of vertices v_{0}, \ldots, v_{n} such that v_{i} is the leftmost vertex of T with depth i. Right contour is symmetrically defined.

- left contour
- right contour
- left/right contour

3. Follow left contour of right subtree and right contour of left subtree. \forall vertices in postorder traveling invariant. After completing processing vertiex v, the right contour and left contour of the subtrees rooted at v are stored in linked lists

Constructing the contour lists

Let $T(u)$ be the subtree rooted at v and $T^{\prime}, T^{\prime \prime}$ be the left and right subtrees of v.

1. If T^{\prime} and $T^{\prime \prime}$ have the same height, then the left contour list of $T(v)$ is the left contour of T^{\prime} plus v; the right conture of $T(v)$ is the same as the right contour of $T^{\prime \prime}$ plus v.

2. If the height of $T^{\prime}<T^{\prime \prime}$ then the right conture of $T(v)$ ist the same as the right contour of $T^{\prime \prime}$ plus v. Let h^{\prime} be the height of $T^{\prime} ; u$ the bottemmost vertex on the left contour of T^{\prime}. Let w be the vertex of the left contour of $T^{\prime \prime}$ with depht $h^{\prime}+1$. Then the left contour of $T(v)$ consists of v, the left contour of T^{\prime} and the partion oft he left contour of $T^{\prime \prime}$ beginning at w and ending at total height $h^{\prime \prime}$ of $T^{\prime \prime}$.

3. Height of $T^{\prime}>T^{\prime \prime}$ symmetric to 2 .
\Rightarrow Must travel down the contours of $T^{\prime}, T^{\prime \prime}$ only as far as the height of the subtree with smaller height.
\Rightarrow The time spent processing vertex v in the postorder travel is proportional to the minimum of the heights $T^{\prime}, T^{\prime \prime}$.

Running time of postorder travel.:

$$
\begin{gathered}
\sum_{c \in T}\left(1+\min \left\{h^{\prime}(v), h^{\prime \prime}(v)\right\}\right)= \\
n+\sum_{v \in T} \min \left\{h^{\prime}(v), h^{\prime \prime}(v)\right\}=O(n)
\end{gathered}
$$

1.2 Radial drawings

Find the root: pruning
1 vertex left \rightarrow root
2 vertices left:

Definition

A radial drawing is a variation of a layered drawing where the root of the tree is placed at the origin and layers are concentric circles centered at the origin.

The children of v are arranged on $c_{i}+1$ according to the number of leaves in their resprective subtrees. That means for each child of a of v the angle β_{u} of W_{u} is $\beta_{u}=$ $\min \left(\frac{l(u) * \beta_{v}}{l(v)}, \tau\right)$

1.3 Planarity testing

Observation

- A graph is planar if all its connected components are planar
- A connected graph is planar, iff all its biconnected components are planar
\Rightarrow

1. Eular planar?
2. Decompose graph in connected and biconnected components
\Rightarrow Algorithm works on biconnected components.

Definition

Let G be a biconnected graph given a cycle C of G, we partition the edges of $G \backslash C$ into classes:

Two edges are in the same class if there is a path between them that does not contain any vertex of C. The subgraph induced by edges in one class is a piece of G w.r.t. C.

\qquad Piece 2
\qquad Piece 3
\qquad Piece 4
—— Piece 5

- Piece 6

Two types of pieces:

- Single edge between two vertices of C $\left(P_{3}, P_{4}, P_{5}, P_{6}\right)$
- Connected graph with at least 1 vertex not in $C\left(P_{1}, P_{2}\right)$

Definition

- The vertices of a piece P that are in C are called attachments of P
- A cycle C of G is separating, if it has at least two pieces and nonseperating if it has none.
- If $G=C$ then C has no pieces

Lemma

Let G be a biconnected graph and let C be a nonseperating cycle of G with piece P. If P is not a path, then G has a seperaiting cycle C^{\prime} consisting of a subgraph of C plus a path of P between two attachments.

Proof

Let u, v be two attachments of P that are consecutive in the circular ordering and let γ be a subpath of C between u and v that does not contain any attachments of $C . P$ is connected
$\Rightarrow \exists$ path π in P between u and v. Be the cycle obtained by replacing γ with π. If P is not a path let c be an edge of P not π. There is a piece of C^{\prime} containing c that is constructed from $\gamma . \Rightarrow C^{\prime}$ has two pieces.

If G is planar, then in any planar drawing of G each piece is drawn either completely inside or outside of C.

Piece 1
Piece 2
Piece 3
Piece 4
Piece 5
Piece 6

Definition

Two pieces of G w.r.t. C interlace if they cannot be drawn on the same side of C without intersection.

Definition

The interlacement graph I of the pieces of G w.r.t. C is the graph with vertices representing the pieces and the edges of interlacing pieces.

Observation

If G is planar, then I of the pieces w.r.t. cycle C must be bipartite.
\Rightarrow Interlacing pieces must be drawn on opposite sides of C.

Theorem

A biconnected graph G with a cycle C is planar iff it holds that:

- For each piece P of G w.r.t. C the graph obtained by adding P to C is planar
- The interlacement graph I of the pieces of G w.r.t. C is bipartite

Algorithm 2 - Planarity testing

Input:

- Biconnected graph with n vertices and edges e : $e \leq 3 n-6$
- Separating cycle c

Output:

- Graph planar? yes/no

Algorithm:

1. Compute pieces of G w.r.t. C
2. For each piece P that is not a path:
a. Let P^{\prime} be the graph obtained by adding P to C
b. Let C^{\prime} be the cycle of P^{\prime} obtained from C by replacing the portion of C between two consecutive attachements with a path of P between them
c. Apply Algorithm 2 recursively to P^{\prime} and cycle C^{\prime}
3. Compute interlacement graph I of the pieces
4. Test whether I is bipartite. If not return "not planar"
5. Return "planar"

AcCording to step 3 - INTERLACEMENT Graph

Given a piece P with attachements a_{0}, \ldots, a_{k-1} in this order around C, we label the vertices of C with integers in the range of $[0,2 n-1]$:

- Label $2 * i$ if it is an attachement of P
- Label $2 * i+1$ otherwise

A piece Q does not interlace with P iff all its attachements have labels that lie in the open interval between two consecutive even numbers.

- Labeling of $C: O(n)$ time
- Testing whether Q interlaces with P takes time proportional to the number of attachements of $Q \leq 1+|E(Q)|$; all pieces are edge-disjoint. \rightarrow linear time
\Rightarrow Step 3 takes $O\left(n^{2}\right)$ time

Step 4 has $O(n)$ and $O\left(n^{2}\right)$ edges. Test for bipartiteness takes $O\left(n^{2}\right)$ time.
$\Rightarrow 1$ recursive call: $O\left(n^{2}\right)$ time
$\Rightarrow O(n)$ calls
\Rightarrow Total running time of Algorithm 2: $O\left(n^{3}\right)$

2.1 Planar orientations

Lemma

Let G be a planar st-graph. Each face of G consists of two directed paths with common origin $[\operatorname{orig}(f)]$ and destination $[\operatorname{dest}(f)]$. The following property is "dual" to the one above.

Lemma

For each vertex v of a planar st-graph, the incoming edges appear consecutively around v, and so do the outgoing edges.

Lemma

For any two faces f, g of a planar st-graph exactly one of the following holds:

- G has a directed path from $\operatorname{dest}(f) \rightarrow$ orign(g)
- G has a directed path from $\operatorname{dest}(g) \rightarrow$ $\operatorname{orig}(f)$
- G^{*} has a directed path from $f \rightarrow g$
- G^{*} has a directed path from $g \rightarrow f$

Proof

Consider topological sorting of G; w.l.o.g. (without loss of generality) assume \#dest $(f)<$ \#orign (g). We call a path from a vertex $v \in G$ that always takes the leftmost/rightmost outgoing edge the leftmost/rightmost path from v

- P_{1} leftmost path from $\operatorname{dest}(f) \rightarrow t$
- P_{2} rightmost path from $\operatorname{dest}(f) \rightarrow t$
- P_{3} leftmost path from $\operatorname{dest}(g) \rightarrow t$
- P_{4} rightmost path from $\operatorname{dest}(g) \rightarrow t$
if there is a directed path from $\operatorname{dest}(f) \rightarrow$ $\operatorname{orig}(g)$. Otherwise, either P_{2} crosses P_{3} or P_{1} crosses P_{4} at a common vertex x.

Then every edge incident to any vertex in P_{2} from the right side is incoming and every edge incident to any vertex in P_{3} from the left side is incoming.
\Rightarrow Because of the construction of G^{*} there is a directed path in $G^{*} f \rightarrow g$

An element of $V \cup E \cup F$ in G is an object of G. For a vertex v :

- $\operatorname{orig}(v)=\operatorname{dest}(v)=v$

For a face f :

- $\operatorname{left}(f)=\operatorname{right}(f)=f$

Lemma

For any two objects o_{1}, o_{2}, o_{3} of a planar stgraph, exactly one of the following holds:

- G has a directed path from $\operatorname{dest}\left(o_{1}\right) \rightarrow$ $\operatorname{orig}\left(o_{2}\right)$
- G has a directed path from $\operatorname{dest}\left(o_{2}\right) \rightarrow$ $\operatorname{orig}\left(o_{1}\right)$
- G^{*} has a directed path from $\operatorname{right}\left(o_{1}\right) \rightarrow$ $\operatorname{left}\left(o_{2}\right)$
- G^{*} has a directed path from $\operatorname{right}\left(o_{2}\right) \rightarrow$ $\operatorname{left}\left(o_{1}\right)$

2.2 Constrained visibility representations

Definition

Two horizontal segments are visible if they can be joined by a vertical segment that does not intersect any other horizontal segment.

Definition

Let G be a planar st-graph, H a visibility representation Γ of G draws each vertex v as horizontal vertex segment $\Gamma(v)$ and each edge (u, v) as vertical edge segment $\Gamma(u, v)$ such that:

- Vertex segments do not overlap
- Edge segments do not overlap
- An edge segment $\Gamma(u, v)$ has its bottom endpoint on $\Gamma(u)$. Its top endpoint on $\Gamma(v)$ and does not intersect any other vertex segments.

Definition

A visible representation is constrained if some predefined edges have the same x-coordinates.

Definition

Let G be a planar st-graph with n vertices. Two parts π_{1}, π_{2} of G are nonintersecting if they are edge disjoint and do not cross at a common vertex.

noncrossing

crossing

Algorithm 3 - CONSTRAINED VISIBILITY

 Input:- Planar st-graph G with vertices
- A set Π of nonintersecting G paths covering $E(G)$
Output:
- Constrained visibility representation Γ of G with integer coordinates and area $O\left(n^{2}\right)$

1. Construct G_{Π} with

- Vertex set $F \cup \Pi$
- Edge set $\{(f, \pi) \mid f=\operatorname{left}(e)$ for some edge

$$
\begin{aligned}
& e \text { of path } \pi\} \cup\{(f, \pi) \mid g= \\
& \operatorname{right}(e) \text { for some edge } e \text { of path } \pi\}
\end{aligned}
$$

2. Assign unit weights to the edges of G and compute an optimal topological numbering. Y of G with $Y(s)=0$.
3. Assign half-unit weights to the edges of G_{Π} and compute an optimal topological numbering X of G_{Π} such that $X\left(s^{*}\right)=-\frac{1}{2}$.
4. For each path $\pi \in \Pi$ do:

For each edge $e \in \pi$ do:
draw $\Gamma(e)$ as vertical segment:
$x(\Gamma(e))=X(\pi)$
$y_{B}(\Gamma(e))=Y(\operatorname{orig}(e))$
$y_{T}(\Gamma(e))=Y(\operatorname{dest}(e))$
5. For each vertex $v \in G$ do:
draw $\Gamma(v)$ as horizontal segment with:
$y(\Gamma(v))=Y(v)$
$x_{L}(\Gamma(v))=\min _{v \in \pi} X(\pi)$
$x_{R}(\Gamma(v))=\max _{v \in \pi} X(\pi)$

LEMMA

The digraph G_{Π} constructed in step 1 of Algorithm 3 is a planar st-graph.

Theorem

Let G be a planar st-graph with n vertices and let Π be a set of nonintersecting paths, covering the edges of G. Algorithm 3 computes in $O(n)$ a visibility representation of G with integer coordinates and $O\left(n^{2}\right)$ area such that the edge of every path $\pi \in \Pi$ is vertically aligned.

From a constrained visibility representation we can construct:

- Constrained polyline drawing in $O(n)$ time.

1. Vertex segment \rightarrow point

IF $v \in \Pi: x(u)=X(\pi) ; y(v)=Y(\Pi)$
otherwise free to chose

2. Edge segment \rightarrow edge

IF $y(v)-y(u)=1$:
segment with ends in $P(u), P(v)$ else:
polygonal line from $P(u)$ to $P(v)$
through the points
$(x(\tau(u, v)), y(u)+1)$;
$(x(\tau(u, v)), y(v)-1)$

- Planar orthogonal drawing in $O(n)$ time assume max degree ≤ 4

1. Vertices:
s/t draw at intersection of vertex segment with median edges.
All other vertices:
Drawn at intersection $P(v)$ of vertex segment with the edge segments of path π_{v}
2. Edges:
$e=(u, v)(u, v \notin\{s / t\})$, drawn as orthogonal chain trough points $P(u)$; intersection of $\tau(u)$ and $\tau(e)$;
intersection of $\tau(e)$ and $\tau(v)$; and $P(v)$.
$\Rightarrow 3$ segments (first and last may be empty)

Edges incident to s, t :

2.3 Dominance drawings

Definition

A dominance drawing τ of a digraph G, is drawing such that, for any two vertices u, v there is a directed path from $u \rightarrow v$ in G iff $x(u) \leq x(v)$ and $y(u) \leq y(v)$ in $\tau . " v$ is dominating $u^{\prime \prime}$

Definition

A digraph without transitive edges is called "reduced".

Lemma

Any strait-line dominance drawing Γ of a reduced planar st-graph G is planar.

Algorithm 4 - Dominance straight-line See handout.

3 PhASES

- Preprocessing \rightarrow set up datastructure

- Preliminary layout \rightarrow Assign to all vertices distinct (x, y) coordinates.
Essentially: 2 topological sortings; scanning for each vertex the successers; clockwise and counterclockwise
- Compaction \rightarrow Reduce area of final drawing

Example

Preliminary layout:

After compaction:

Minimal drawing:

THEOREM

Let G be a reduced planar st-graph with n vertices. Algorithm 4 dominance straight line constructs in $O(n)$ time a planar straight-line dominance grid drawing Γ of G with $O\left(n^{2}\right)$ area.

- Symmetries

Any components of G that are isomorphic (same direction of edges + boundaries of the faces) or symmetric (axially or rotationally isomorphic to themselves) have straight-line drawings that are congruent (up to a translation-reflection) or symmetric (with respect to the line through source/sink, or 180° rotation through its centroid)

- Minimum area drawings

Algorithm can be modified but symmetries may be lost

- General planar st-graphs Add dummy vertex on all transitive edges

3.1 Orthogonal drawings with maximum-degree 4

Definition

An st-numbering for a graph G with n vertices is a numbering for $s=v_{1}, v_{2}, \ldots, v_{n}=t$ of the vertices of G such that every vertex $v_{j} \notin\{s, t\}$ is adjacent to at least two vertices v_{i}, v_{k} with $i<j<k$.
We orient every edge of G from the low number vertex to the high numbered one.

BASIC AlgORIthM IDEA

- Compute st-numbering
- Place first vertex on grid. Allocate columns for all incident edges
- Place other vertices on grid according to stnumbering:

0 Vertex v gets a new row
$0 \quad$ All incoming edges of v are drawn on the already allocated columns
0 All outgoing edges of v are "drawn" by allocating one new column per edge
\Rightarrow

- $O(n)$ time
- $O\left(n^{2}\right)$ area
- At most $2 n+4$ bends (at most 2 per edge)

Pair vertices for space reduction:

1. Row pairs:
a. Both vertices share the same row
b. Vertices of such a pair are placed in different rows, but their placement results in reusing one row

2. Column pairs
a. The two vertices are placed such that at least two different edges use the same column

Definition

A vertex with a incoming and b outgoing edges is a $a-b$ vertex $(0 \leq a+b \leq 4)$

Condense G

Scan G for 1-1 vertices whose outgoing edge enters a 1-2 vertex or a 1-3 vertex. Absorb these 1-1 vertices into a single edge until no 1-2 or 1-3 vertex has a 1-1 vertex as immediate predecessor.

Condensed graph $G^{\prime}\left|V\left(G^{\prime}\right)\right|=n^{\prime}$. Need to modify the st-numbering to remove gaps.

Definition

- An assigned vertex belongs to a pair; an unassigned vertex does not
- The next unassigned vertex considered is always a 1-2, 1-3, 2-2 vertex and it is paired with some lower numbered vertex in G^{\prime}
- The vertex of a pair with the lower stnumbering is called the first vertex, the other is the second vertex
- A predecessor of a vertex in G or G^{\prime} with respect to the st-numbering is the
immediate predecessor of the vertex
- Let $\left(v_{i}, v_{j}\right)(j<i)$ be a pair formed by Algorithm 5. If they are not predecessorsuccessor they are called independent

Case analysis for drawing pairs

1) v_{i} is a 2-2 vertex
a. v_{j} is a 2-2 vertex and predecessor of v_{i}

b. v_{j} is a 2-2 vertex independent of v_{i}

c. $\quad v_{j}$ is a 2-1 or 3-1 vertex and predecessor of v_{i}

d. v_{j} is a 1-1 vertex and predecessor of v_{i}

e. v_{j} is a 1-2 or 1-3 vertex and predecessor of v_{i}

$k<j$
v_{k} other predecessor of
f. $\quad v_{j}$ is a 1-2 or 1-3 vertex and independent of v_{i}

2) v_{i} is a 1-2 or 1-3 vertex
\rightarrow it is always paired with v_{i-1}
a. $\quad v_{i-1}$ is a 2-2, 2-1 or 3-1 vertex

Reuse column as in cases $1 \mathrm{a}-1 \mathrm{c}$
b. v_{i-1} is a 1-2, 1-3 vertex independent from v_{i}

c. $\quad v_{i-1}$ is a 1-2 or 1-3vertex predecessor of v_{i}
\rightarrow We have a row pair if both of the following conditions hold:

- The edge $\left(v_{i-1}, v_{i}\right)$ has not absorbed any 1-1 vertices of G
- Either v_{i} is connected later to another vertex v_{j} which is $1-1,1-2,1-3$ OR v_{i} is connected later to a 2-2 vertex, which is the second vertex of a pair of type 1.d) OR 1.e)

e. $\quad v_{i-1}$ id a 1-2 or 1-3 vertex and at least one of the conditions of 2.c) does not hold

Algorithm 6 - Step 6

Place absorbed vertices on bends or grid points where are no crossings. If not possible:
introduce new rows.

Lemma

- Suppose there is a total of p_{1} column pairs, p_{2} unassigned degree 2 vertices, p_{3} unassigned degree 3 vertices in G : Let $k_{1}=p_{1}+p_{2}+\frac{p_{3}}{2}$ then Algorithm 6 produces a drawing of width at most $n+1-k_{1}$
- Suppose that k_{2} is the number of row pairs in G then Algorithmen 6 produces a drawing of height at most $n+1-k_{2}$ if $k_{2} \geq 1$ OR n if $k_{2}=0$

Theorem

Let G be a biconnected graph G with n vertices and maximum degree 4. Algorithm 6 FourOrthogonal constructs an orthogonal grid drawing Γ of G in linear time $O(n)$ such that:

- $\quad \Gamma$ has area at most $0.77 n^{2}+O(n)$
- $\quad \Gamma$ has a total number of $2 n+4$ bends
- No edge of Γ has more than 2 bends

Running time

- Insert rows on top of existing drawing \rightarrow easy
- Insert columns anywhere \rightarrow problem

Solution: Order maintenance problem

Insert $(x, y): \quad$ Insert y directly after x
Delete (x) :
$\operatorname{Order}(x, y): \quad$ True if x is before y in the list.
False if not

All operations: $O(1)$ time

3.2 Orthogonal drawings with maximum-degree > 4

Better: Each vertex is drawn as rectangular box with 4 sides lying on the grid. Each side (except bottom) has a number of connections with integer coordinates where incident edges are attached.

Algorithm

- Insert vertices in st-ordering
- Decide size/exact placement of vertex when inserting

Size

- All outgoing edges connect to the top of the box
- Incoming edges are split between the left side $\left\lceil\frac{\operatorname{indeg}(v)}{2}\right\rceil$ and the right side $\left\lfloor\frac{\operatorname{indeg}(v)}{2}\right\rfloor$ of the box

Position

Columns:

- Order all columns of the current drawing from left to right (including all columns with incoming edges) compute the columns C_{1}, C_{2} containing the median incoming edges of v.
- Insert needed amount of columns for v between C_{1} and C_{2} (one median C : right c)

Rows:

- Insert needed amount on top of the existing drawing.

FINAL

- Put box in the newly created space
- Connect all incoming edges from column C_{1} and left to the left side; all incoming edges from column C_{2} and right to the right side of the box

Given a graph with m edges and st-ordering $\Rightarrow \quad$ width $\leq m+n_{\text {out } 1}$ Σ number of vertices with outdegree = 1
height $\leq \frac{m}{2}+\frac{n_{\text {odd }}}{2}+n_{\text {in } 1}+n_{\text {in } 2}$ with odd degree

IMPROVE

Rows/columns may be shared. Vertices of degree 2 and some of degree 3,4 can be represented as points.

Theorem

Let G be a graph with m edges and an st-
numbering. There exists an Algorithm that produces an orthogonal gridding Γ of G, by representing the height degree vertices as boxes. Γ can be computed in $O(m)$ time and it has the properties:

- The perimeter of each vertex is proportional to its degree
- Width of Γ is at most $m-1$
- Height of Γ is at most $\frac{m}{2}-2$
- Each edge has at most one bend
- Total number of bends is at most $m-n_{\text {out1 }}$ number of vertices \uparrow with out-degree $=1$

4.1 Layered drawings of digraphs

Given: Digraph G
Wanted: Layered polyline drawing Γ of G
Steps:
0. Cycle Removal (Preprocessing) Temporarily reverse edge directions to make G acyclic

1. Layer assignment

Assign vertices to horizontal layers (y-coordinates)
2. Crossing Reduction

Order vertices within layers to reduce crossings
3. Assign x-coordinates
4. If necessary put cycles back in

4.1.1 Layer assignment

Definition

Suppose that $G=(V, E)$ is a cyclic digraph:

- A layering of G is a partition of V into subsets $L_{1}, L_{2}, \ldots, L_{n}$ such that: If $(u, v) \in E$ where $u \in L_{i}, v \in L_{j}$, then $i>j$
- The height of such a layering is the number of layers h
- G is then called a (h-)layered digraph
- The width of a layered digraph is the
number of vertices in the largest layer

$$
\max _{1 \leq i \leq h}\left|L_{i}\right|
$$

- The span of an edge (u, v) with $u \in L_{i}$, $v \in L_{j}$ is $i-j$
- In a proper digraph, all edges have span = 1

REQUIREMENTS OF LAYERING

- Compactness (small width/height)
- Proper (if not insert dummy vertices on "long" edges)
- Small number of dummy vertices
- Running times depend on all vertices
- Bends occur only at dummy vertices

Minimum height layering

Algorithm 7 - Longest path layering

Input: Reduced, acyclic graph G
Output: Layering of G with minimum height

1. Place all sinks in L_{1}
2. Each remaining vertex v is placed in layer L_{p+1} where the longest path from $v \rightarrow \operatorname{sink}$ has length p

Properties of the drawing produces b Algorithm 7:

J Linear time
J Minimum number of layers
L Drawings may be too wide

Minimum width layering

Finding a layering with minimum height and minimum width \rightarrow NP complete
\Rightarrow Heuristic that gives a layering with width at
most w and height at most $h \leq\left(2-\frac{2}{w}\right) h_{\min }$.
$h_{\min }$ minimum height of layering of width w.

Note

Width of layering does not take dummy vertices into account!

Algorithm 8 - Coffman-Graham layering

Input: Reduced digraph $G=(V, E)$ and $w \in \mathbb{N}$
Output: Layering of G with width w

1. Initially, all vertices are unlabeled
2. For $i=1$ to $|v|$ do
a. Choose unlabeled vertex v such that $\{\pi(u) \mid u, v \in E\}$ is minimized
b. $\pi(v)=i$
3. $k=1, L_{1}=\emptyset, U=\emptyset$
4. While $U \neq V$ do
a. Choose $u \in V-U$ such that every vertex in $\{v \mid(u, v) \in E\}$ is in U and $\pi(u)$ is maximized
b. If $\left|L_{k}\right|<w$ and for every edge (u, v), $x \in L_{1} \cup \ldots \cup L_{k-1}$ then add u to L_{k} else $k=k+1, \mathbb{L}_{k}=\{u\}$
c. Add u to U

Details to Algorithm 8 - Step 2

Algorithm 8 uses lexicographic order defined on finite sets of integer >0. The largest item of the set is the most significant!

$$
\begin{gathered}
\{1,4,7\}<\{3, \mathbf{8}\} \\
\{1,5, \mathbf{8}, 9\}>\{3,4,9\}
\end{gathered}
$$

Example

○ U

O dummy vertices
$w=3$

Minimize number of dummy vertices
Suppose each vertex u has a y-coordinate $y(u)$ with the properties:

1. $y(u)$ is an integer $\forall u$
2. $y(u) \geq 1 \quad \forall u$
3. $y(u)-y(v) \geq 1$ for each edge (u, v)

The function y defines a layering with
$L_{m}=\{u \in V \mid y(u)=m\}$. Let
$f=\sum_{(u, v) \in E}(y(u)-y(v)-1)$ be the sum of the vertical spans of the edges in this layering minus the number of edges.

The layer assignment problem is reduced to choosing y-coordinates to minimize f subject to conditions 1-3 integer linear problem
\Rightarrow Polynomially solvable

4.1.2 Crossing reduction

Observation

The number of edge crossings in a layered digraph does depend only on the ordering of the vertices.

\Rightarrow Combinatorial problem!
Minimize edge crossings in a layered digraph \Rightarrow NP complete

LAYER-BY-LAYER SWEEP

Definition

A two layered digraph is a bipartite digraph $G=\left\{L_{1}, L_{2}, E\right)$ consisting of disjoint vertex sets L_{1}, L_{2} and a set $E \subseteq L_{1}, L_{2}$ of edges.

We specify vertex orderings by giving unique x coordinates $x_{i}(u)$ to each vertex $u \in L_{1} ; i=1,2$

Definition

- The number of crossings in a digraph of G specified by x_{1}, x_{2} is $\operatorname{cross}\left(G, x_{1}, x_{2}\right)$
- The minimum number of crossings, when the vertices of L_{1} are ordered by x_{1} is $\operatorname{opt}\left(G, x_{1}\right)$

It holds: $\operatorname{opt}\left(G, x_{1}\right)=\min _{x_{2}} \operatorname{cross}\left(G, x_{1}, x_{2}\right)$

Definition

We define the two-layer crossing problem as follows. Given a two layered graph $G=\left(L_{1}, L_{2}, E\right)$ and an ordering x_{1} on L_{1} find an ordering x_{2} on L_{2} such that $\operatorname{cross}\left(G, x_{1}, x_{2}\right)=$ $\operatorname{opt}\left(G, x_{1}\right)$
\Rightarrow NP-Complete

Definition

Let u, v be distinct vertices in L_{2}. The crossing number $C_{u v}$ (for $u \neq v \in L_{2}$) is the number of pairs $(u, w),(v, z)$ of edges with $x_{1}(w)>x_{2}(z)$ $\& x_{2}(u)<x_{2}(v) \& C_{u v}=0$.

Example

	p	q	u	t
p	0	2	1	1
q	5	0	6	3
u	6	9	0	6
t	2	3	2	0

order of vertices
is p, q, u, t
order of vertices
is t, u, q, p

Lemma

If $G=\left(L_{1}, L_{2}, E\right)$ is a 2-layer digraph and x_{1}, x_{2} are orderings of L_{1} and L_{2} then

$$
\operatorname{cross}\left(G, x_{1}, x_{2}\right)=\sum_{x_{2}(u)<x_{2}(v)} C_{u v}
$$

Further:

$$
\operatorname{opt}\left(G, x_{1}\right) \geq \sum_{u, v} \min \left(C_{u v}, C_{v u}\right)
$$

Where the sum is over all unordered pairs $\{u, v\}$ of vertices in L_{2}.

Sorting methods

- Adjacent exchange
o Scan the vertices of L_{2} from left to right, exchanging all adjacent vertices u, v if $C_{u v}>C_{v u}$; until the number of crossings does not reduce ("Bubble Sort")
- Split
o Choose pivot vertex $p \in L_{2}$
o For each vertex $u \in L_{2} \quad u \neq p$ do:

$$
\begin{aligned}
& \text { If } C_{u p}<C_{p u} \\
& \text { Then place } u \in V_{\text {left }} \\
& \text { Else place } u \in V_{\text {right }}
\end{aligned}
$$

o Recurs on $V_{\text {left/right }}$ concatenate ("Quicksort")

Problem with sorting methods: Both need pre compute of crossings array!

Averaging method

- Barycenter Method
x_{2} is the barycenter for all $u \in L_{2}$.

$$
\operatorname{avg}(u)=\frac{1}{\operatorname{deg}(u)} \sum_{\substack{v \in N_{u}}} x_{1}(v)
$$

If two vertices have the same barycenter, we separate them arbitrarily by a small amount. The number of crossings achieved is $\operatorname{avg}\left(G, x_{1}\right)$

- Median method

If the neighbors of $u \in L_{2}$ are $v_{1}, v_{2}, \ldots, v_{j}$ with $x_{1}\left(v_{1}\right)<x_{1}\left(v_{2}\right)<\cdots<x_{1}\left(x_{j}\right)$ then we define $\operatorname{med}(u)=x_{1}\left(v_{|j / 2|}\right)$.
If u has no neighbors, $\operatorname{med}(u)=0$.
We order the vertices of L_{2} by sorting them on med (u).
If $\operatorname{med}(u)=\operatorname{med}(v)$, and $\operatorname{say} \operatorname{deg}(v)$ is odd and $\operatorname{deg}(u)$ is even, then $x_{2}(v)<$ $x_{2}(u)$.
If both degrees are odd or even, we place u and v arbitrarily.
The number of crossings achieved is $\operatorname{med}\left(G, x_{1}\right)$

Theorem

Suppose that $G=\left(L_{1}, L_{2}, E\right)$ is a two-layer digraph and x_{1} is an ordering of L_{1}, if $\operatorname{opt}\left(G, x_{1}\right)=0$ then $\operatorname{avg}\left(G, x_{1}\right)=\operatorname{med}\left(G, x_{1}\right)=$ 0 . Neither method gives an optimal solution in all cases!

Worst Case barycenter

WORST CASE MEDIAN

APPLICATION-HYBRID APPROACH

1. Initial ordering with median method
2. Tiebreak with barycenter method
3. Define the output with adjacent exchange

4.1.3 Horizontal coordinate assignment

Consider the directed path
$p=\left(v_{1}, v_{2}, \ldots, v_{k-1}, v_{k}\right)$ where v_{2}, \ldots, v_{k-1} are dummy vertices. If this path was drawn straight, then the x-coordinates of the dummy vertices v would satisfy:

$$
x\left(v_{i}\right)-x\left(v_{1}\right)-\frac{i-1}{k-1}\left(x\left(v_{k}\right)-x\left(v_{1}\right)\right)
$$

For each of these path p corresponding to an edge with span >1, we define

$$
g(p)=\sum_{i=2}^{k-1}\left(x\left(v_{i}\right)-\frac{i-1}{k-1}\left(x\left(v_{k}\right)-x\left(v_{1}\right)\right)+x\left(v_{1}\right)\right)^{2}
$$

To make the edges as trait as possible, we minimize the global sum $\sum g(p)$ over all paths of dummy vertices subject to the constraints $x(w)-x(z) \geq \delta$ for all pairs w, z of vertices in the same layer (w right of z).

Constraints ensure:

- Ordering is maintained
- Minimal horizontal distance of δ between vertices

Add further constraints:

- X-coordinates lie within width boundary

5.1 Label placement

Assume

Drawing is fixed, may not be changed.

Definition

A label is a textural description that conveys information or clarifies the meaning of complex structures presented in graphical form. Let Γ be a drawing and F the set of features to be labeled. A solution to the labeling problem for Γ assigns labels to each feature $f \in F$ such that the relevant information is communicated "in the best possible way". This can be achieved by positioning the labels "in the most appropriate place". For each feature there is a large number of potential label positions, the labeling space.

LABEL QUALITY EVALUATION

Basic rules:

1. No overlap of a label with other labels or features
2. Each label can be easily identified with exactly one feature in the drawing
3. Each label must be placed in the best possible position (among all acceptable ones)

2	1
3	4

Definition

Given a set F of graphical features to be labeled, we define:
Λ is the set of all label positions
Λ_{f} the set of all label positions for feature $f \in F$
$\lambda \quad F \rightarrow \Lambda$ a function assigning a label position to a feature in example $\Lambda(f)=\lambda_{f} \in \Lambda_{f}$

OPtimization problem

Each label position is associated with a cost function: $\Lambda \rightarrow \mathbb{N}$. Cost is determined with respect to the quality of a label position. We want to find a label assignment to all features that minimizes the total cost.

The labeling problem

Given: Set of features F
Find: Label assignment minimizing
$\sum_{i \in F} \sum_{j \in \Lambda} \operatorname{cost}(\lambda(i)) * P(i, j)$ where
$P(i, j)= \begin{cases}1 & \lambda(i)=j \\ 0 & \text { otherwise }\end{cases}$
And $\sum_{i \in F} \sum_{j \in \Lambda} P(i, j)=|F|$ where $\sum_{j \in \Lambda_{i}} P(i, j)=1 \quad i \in F$

5.2 Graphical feature label placement

Most general method!

Algorithm 9 - BASIC LABELING

Input: $\quad A$ drawing Γ and a set of objects F to be labeled.
Output: A label assignment free of overlaps

1. Select label positions for each object
2. Remove heavily overlapping labels; Group overlapping labels together
3. Final label assignment: Solve a matching problem

HeUristics to select label positions

Points: Label positions touching the corresponding point.

4:

8:

Edges: Define a number of equally spaced points on the edge. Each label position is associated with exactly one of those
points and touches it in a corner:

Reducing the number of labels

Create an intersecting graph: Each label position is a node, if 2 positions intersect, we add an edge. Finding intersections between n labeling rectangles: $O(n \log n+k)$

Goal: Reduce the intersection graph to a set of disconnected subgraphs.

Preprocessing: Remove all label positions that add to the complexity of the problem without (potentially) improving the solution.

ExAMPLE

\Rightarrow Remove 3 \& 4 .
Keep 1 for later possible use

Main step

If a subgraph C must be split, we remove the node with highest degree.
Unless it corresponds to a label position of some object with very few label positions. \rightarrow Choose second highest degree.
Repeat until C is split in two disjoint subgraphs or C is a complete graph.

Matching labels to objects

Definition

Given a drawing Γ, a set F of graphical features to be labeled, and a set Λ of label positions for
F. Then we define the matching graph
$G_{m}\left(V_{f}, V_{C}, E_{m}\right):$

- Each node $f \in V_{f}$ corresponds to a feature $f \in F$
- Each node $c \in V_{C}$ corresponds to a group of overlapping labels
- Each edge $(f, c) \in E_{m}$ connects a node $f \in V_{f}$ to a node $c \in V_{c}$ iff $f \in F$ has a label position that is a member of group C
- G_{m} is bipartite!
- The cost of assigning label l to feature f is the weight of edge $(f, l) \in E_{m}$
- The size of G_{m} depends

0 On the size of the input drawing $\left(V_{f}\right)$
o On the size of the set of labels $\quad\left(V_{C}\right)$
o On the density of the overlaps $\left(E_{m}\right)$
A final label assignment can be found by computing the maximum cardinality minimum weight matching on G_{m}. This can be done in $O\left(n^{2.376}\right)$ randomized time. Or in $O(\sqrt{n} * m)$ deterministic time.

Example

Create the intersection graph:

Simplify! Remove all nodes with degree ≥ 3
$\Rightarrow A 4$ \& D2
Create the matching graph:

Find maximum cardinality minimum weight matching on G_{n}

Solution

$A B C D$

5.3 Edge label placement (ELP)

Assumption

1. All labels have the same height
2. Each edge has only one label assigned to it

Wanted

Assign to each edge a label position free of overlaps, that touches only "its" edge. Finding the initial set of label positions.

- Divide the input drawing into consecutive horizontal strips of equal height $\widehat{=}$ height of labels
- Each label must lie fully inside one horizontal strip. \rightarrow "Slide" the label inside the strip until it touches the correct edge.
- A label is only included in Λ_{e} if it does not overlap any other graphical features. Overlapping other label positions is allowed.

EXAMPLE

Observations

- A label position of edge e does not overlap any other label position of e
- If to label positions overlap, they must lie inside the same horizontal strip
- Each label position overlaps at most one label position

Algorithm 10 - EDGE LABELING

Input: \quad A drawing Γ of graph $G=(V, E)$

Output: A label assignment to the edge without overlap

1. Split Γ into horizontal strips of label heights
2. Find all label positions for each edge and construct the groups of overlapping labels
3. Construct the matching graph G_{m} of Γ
4. Match label positions to edges:

- Find maximal cardinality
- Minimum weight matching of G_{m}

In G_{m} each v_{c} has degree at most 2.
\rightarrow Matching heuristic in linear time

Algorithm 11 - FASt MAtching

Input: \quad Matching Graph G_{m}

Output: A maximum cardinality matching for G_{m} with low total weight.

1. If the minimum weight incident edge of $f \in V_{f}$ connects to $c \in V_{c}$ with degree $=1$, then:
a. Assign this edge as matched edge
b. Update G_{m} :

- Remove f, c and all incident edges
- Store $f, c,(f, c)$ as part of the matching

2. If a node $f \in V_{f}$ has degree $=1$ then:
a. Assign its incident edge as matched edge
b. Update G_{m}
3. Repeat 1. \& 2. Until no more edge can be matched
4. Delete all nodes with degree $=0$ from G_{m}
5. For each node $f \in V_{f}$ do:

Remove all edges except the two with lowest weight
6. $\quad G_{m}$ consists of simple path and cycles
a. Find the 2 possible maximum cardinality matchings for each path/cycle
b. Choose the matching with minimum weight
() Easy!
() Works well if the edges are long and vertical \rightarrow Many potential label positions! Good for hierarchical and strait line drawings
(:) Cannot deal with horizontal edges! \rightarrow Bad for orthogonal drawings
\rightarrow Solution: Add vertical strips
: Some edges may get no label or outcome is not satisfactory.
\rightarrow Solution: Manual tweaking

5.4 Label Placement by drawing modification

If we do not have a graphic or technical map, we can modify the drawing to help with label placement.

1. Modify the existing layout to make room from the labels. (Open problem!)
2. Produce a new drawing integrating the layout and the labeling process. \rightarrow For orthogonal drawings

To No. 2
Given: Let G be a planaer graph with orthogonal representation H. Let L be a set of labels for the edges of G (1 label per edge) modeled as axis parallel rectangle with given height and width.

Want: A orthogonal grid drawing of G such that the edges are labeled and have the shape defined in H.

CONSTRAINTS AND GOALS FOR A "GOOD" DRAWING

1. A label is drawn with one of its sides as a proper subset of its edge.

2. A label of segment s cannot overlap any other label, vertex or segment
3. A good label placement minimizes the area of the drawing. This problem can be formulated as integer linear program and solved by heuristics (Branch \& Cut)

6.1 Rectangular cartograms ${ }^{1}$

Definition

A cartogram is a map where the size of a region is not the true size, but corresponds to a particular geographic variable (e.g. population). The geometry is usually distorted to convey the information of the alternate variable. "Value-byarea" map.

$$
\begin{array}{rll}
\text { cartogram } & \leftrightarrow & \text { Kartenanamorphote } \\
\text { thematic map } & \leftrightarrow & \text { Kartogramm }
\end{array}
$$

Generals types of cartograms

- Contiguous area cartograms Have deformed regions so that the desired size can be obtained and the adjacencies kept. (standard model)
- Non-contiguous area cartograms The region have their true shape, but are sealed down and generally do not touch anymore
- Cartograms based on circles
- Rectangular cartograms Each region is represented by a single rectangle
- Hybrid cartograms

Hybrid of the first and forth type: Regions are rectilinear polygons with small number of vertices

Rectangular cartograms (1934)

© Areas can be computed easily
(6) Rectangular shape is less recognizable and imposes limitations to the possible layout

QUALITY CRITERIA

- Cartographic error for each region

$$
\frac{\left|A_{C}-A_{s}\right|}{A_{s}}
$$

$A_{c}=$ area of the region in the cartogram $A_{s}=$ area specified by the variable to be shown

- Average and maximum cartographic error
- Correct adjacencies of the rectangles
- Maximum aspect ratio
- Suitable relative positions

[^0]
Definition

- A rectangular partition of a rectangle R is a partition of R into a set S of nonoverlapping rectangles such that no 4 rectangles in S meet in the same point.
- A rectangular dual of a plane graph G is a rectangular partition R such that:

1. There is a one-to-one correspondence between the rectangles in R and the node in G
2. Two rectangles in R share a common boundary iff corresponding nodes in G are connected

- A triangle is a cycle of G consisting of 3 areas
- A cycle C of G divides the plane into an interior and an exterior region. If C contains at least one vertex in its interior and exterior then C is a separation cycle

Theorem

A plane graph G has a rectangular dual R with 4 rectangles on the boundary of \mathcal{R} if and only if

1. Every interior face is a triangle and the exterior face is a quadrangle
2. G has no separating triangles

Note

- An error-free cartogram need not exist even if a rectangular dual does
- A rectangular dual need not be unique
- Planar graphs can always be represented with rectangles, L-shapes and T-shapes

6.2 Algorithm 12 - Rectangular dual ${ }^{2}$

DEFINITION

A face graph F of a map has a vertex for each region in the map and an edge between 2 vertices iff their regions share a common boundary

1. Preprocessing

- Construct the face graph of the map
- Triangulate all non-triangular faces of E
\rightarrow Each triangulation leads to a different rectangular dual!

[^1]- Process nodes of degree < 4
\rightarrow Integrate these nodes into adjacent
one
- Degree 3:

\rightarrow BE becomes L-shaped in final cartogram
- Degree 2:

- Degree 1:

\rightarrow ZA becomes O-shaped in final cartogram
- Disconnected regions
\rightarrow Choose one region to represent all

2. Directed regular edge labels

The directed edge labels give an adjacency direction between neighboring vertices of F. That follow from the relative geographic position of the respective regions.

HeURIStic

Consider the line through the centers of mass of the regions and its compass direction

We orient the directions from
south \rightarrow north (T_{1}) from west \rightarrow east $\left(T_{2}\right)$

Observation

A face graph F with directed regular edge labeling can be represented by a rectangular dual iff:

1. Every internal region has at least 1 neighbor on each compass direction
2. When traversing the regions of any node v in clockwise order, starting at the west most northern neighbor, we encounter:

- All north neighbors
- All east neighbors
- All south neighbors
- All west neighbors
\rightarrow "Realizable" edge labeling

3. Rectangular layout

- We add 4 outer nodes to $F: N, E, W, S$ and edges: $N-E, N-W, S-E, S-W$
- If necessary add "sea" regions to preserve shape and adjacencies
\rightarrow New graph G
- Construct x-coordinates
a) Let G_{1} be the graph consisting of all vertices of G and all edges of T_{1} plus the 4 exterior edges with directions $S \rightarrow W, W \rightarrow N, S \rightarrow E, E \rightarrow N$ $\Rightarrow G_{1}$ is a planar st-graph with source S and $\operatorname{sink} N$
b) Associated dual st-graph G_{1}^{*} : Let the source of G_{1}^{*} be the left face of W^{*} and the sink the right face of E^{*}. For each node $f \in G_{1}^{*}$ let $d_{1}(f)$ be the length of the longest path from W^{*} to f; Let $D_{1}:=d_{1}\left(E^{*}\right)$.
For each interior vertex v :

$$
\begin{aligned}
x_{L E F T}(v) & =d_{1}(\operatorname{LEFT}(v)) \\
x_{R I G H T}(v) & =d_{1}(\operatorname{RIGHT}(v))
\end{aligned}
$$

For the 4 exterior vertices:

$$
\begin{aligned}
x_{L E F T}(W) & =0 \\
x_{\text {RIGHT }}(W) & =1 \\
x_{L E F T}(E) & =D_{1}-1 \\
x_{\text {RIGHT }}(E) & =D_{1} \\
x_{L E F T}(S) & =1 \\
x_{R I G H T}(S) & =D_{1}-1 \\
X_{\text {LEFT }}(N) & =1 \\
x_{\text {RIGHT }}(N) & =D_{1}-1
\end{aligned}
$$

- Constructing the y-coordinates

Similar with $G_{2} . G_{2}$ consists of all vertices of G, all edges of T_{2}, plus the exterior edges $E \rightarrow S, S \rightarrow E, W \rightarrow N, N \rightarrow E$ G_{2} : source $=W$, sink $=E$

Theorem

Let G be a graph with realizable directed edge labeling we assign to each vertex $v \in G$ the rectangle $f(v)$ bounded by lines:

$$
\begin{array}{cl}
X_{L E F T}(v), & x_{R I G H T}(v) \\
y_{L O W}(v), & y_{H I G H}(v)
\end{array}
$$

Then the set $\{f(v) \mid v \in G\}$ forms a rectangular dual of G. If a relizable directed edge labeling is given, a rectangular dual takes $O(n)$ time.

6.3 Main cartogram algorithm

See handout!

[^0]: ${ }^{1}$ On Rectangular Cartograms, M. van Kreveld \& B. Speckmann, www.cs.uu.nl/research/techreps/repo/CS-2004/2004-040.pdf

[^1]: ${ }^{2}$ Regular edge labeling of 4-connected plane graphs and its applications in graph drawing problems, G. Kant, X. He, http://www.sciencedirect.com/science/article/pii/S030439759500257X

